J Phys Chem C Nanomater Interfaces
January 2021
Laser-pulsed atom probe tomography (LAPT) is a materials characterization technique that has been widely applied in the study and characterization of III-nitride semiconductors. To date, most of these studies have used light sources ranging from the visible to the near-ultraviolet region of the spectrum. In this manuscript, we demonstrate that a recently developed extreme ultraviolet (EUV) radiation pulsed atom probe tomograph can trigger controlled field ion evaporation from III-nitride samples.
View Article and Find Full Text PDFWe investigate the spectrally resolved internal quantum efficiency (IQE) and carrier dynamics in semipolar [Formula: see text] core-shell triangular nanostripe light-emitting diodes (TLEDs) using temperature-dependent photoluminescence (TDPL) and time-resolved photoluminescence (TRPL) at various excitation energy densities. Using electroluminescence, photoluminescence, and cathodoluminescence measurements, we verify the origins of the broad emission spectra from the nanostructures and confirm that localized regions of high-indium-content InGaN exist along the apex of the nanostructures. Spectrally resolved IQE measurements are then performed, with the spectra integrated from 400-450 nm and 450-500 nm to obtain the IQE of the QWs mainly near the sidewalls and apex of the TLEDs, respectively.
View Article and Find Full Text PDFWe use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young's modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young's modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.
View Article and Find Full Text PDFGaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios.
View Article and Find Full Text PDFIn this work, we utilize the finite difference time domain (FDTD) method to investigate the Purcell factor, light extraction efficiency (EXE), and cavity quality parameter (Q), and to predict the modulation response of Ag-clad flip-chip GaN/InGaN core-shell nanowire light-emitting diodes (LEDs) with the potential for electrical injection. We consider the need for a pn-junction, the effects of the substrate, and the limitations of nanoscale fabrication techniques in the evaluation. The investigated core-shell nanowire consists of an n-GaN core, surrounded by nonpolar m-plane quantum wells, p-GaN, and silver cladding layers.
View Article and Find Full Text PDF