This Perspective discusses the published data and recent developments in the research area of bromodomains in parasitic protozoa. Further work is needed to evaluate the tractability of this target class in the context of infectious diseases and launch drug discovery campaigns to identify and develop antiparasite drugs that can offer differentiated mechanisms of action.
View Article and Find Full Text PDFBackground: Alterations in the composition of the lung microbiome associated with adverse clinical outcomes, known as dysbiosis, have been implicated with disease severity and exacerbations in COPD.
Objective: To characterise longitudinal changes in the lung microbiome in the AERIS study (Acute Exacerbation and Respiratory InfectionS in COPD) and their relationship with associated COPD outcomes.
Methods: We surveyed 584 sputum samples from 101 patients with COPD to analyse the lung microbiome at both stable and exacerbation time points over 1 year using high-throughput sequencing of the 16S ribosomal RNA gene.
It is commonly assumed that drug targets are expressed in tissues relevant to their indicated diseases, even under normal conditions. While multiple anecdotal cases support this hypothesis, a comprehensive study has not been performed to verify it. We conducted a systematic analysis to assess gene and protein expression for all targets of marketed and phase III drugs across a diverse collection of normal human tissues.
View Article and Find Full Text PDFOncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression.
View Article and Find Full Text PDFEusocial insects organize themselves into behavioral castes whose regulation has been proposed to involve epigenetic processes, including histone modification. In the carpenter ant Camponotus floridanus, morphologically distinct worker castes called minors and majors exhibit pronounced differences in foraging and scouting behaviors. We found that these behaviors are regulated by histone acetylation likely catalyzed by the conserved acetyltransferase CBP.
View Article and Find Full Text PDFDevelopmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants.
View Article and Find Full Text PDFIn eusocial insects, genetically identical individuals can exhibit striking differences in behavior and longevity. The molecular basis of such phenotypic plasticity is of great interest to the scientific community. DNA methylation, as well as other epigenetic signals, plays an important role in modulating gene expression and can therefore establish, sustain, and alter organism-level phenotypes, including behavior and life span.
View Article and Find Full Text PDFUnderstanding the molecular basis of how behavioural states are established, maintained and altered by environmental cues is an area of considerable and growing interest. Epigenetic processes, including methylation of DNA and post-translational modification of histones, dynamically modulate activity-dependent gene expression in neurons and can therefore have important regulatory roles in shaping behavioural responses to environmental cues. Several eusocial insect species - with their unique displays of behavioural plasticity due to age, morphology and social context - have emerged as models to investigate the genetic and epigenetic underpinnings of animal social behaviour.
View Article and Find Full Text PDFGenomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants.
View Article and Find Full Text PDFOrphan genes are defined as genes that lack detectable similarity to genes in other species and therefore no clear signals of common descent (i.e., homology) can be inferred.
View Article and Find Full Text PDFIn many ant species, sibling larvae follow alternative ontogenetic trajectories that generate striking variation in morphology and behavior among adults. These organism-level outcomes are often determined by environmental rather than genetic factors. Therefore, epigenetic mechanisms may mediate the expression of adult polyphenisms.
View Article and Find Full Text PDFAnts (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems.
View Article and Find Full Text PDFSNP (single nucleotide polymorphism) discovery using next-generation sequencing data remains difficult primarily because of redundant genomic regions, such as interspersed repetitive elements and paralogous genes, present in all eukaryotic genomes. To address this problem, we developed Sniper, a novel multi-locus Bayesian probabilistic model and a computationally efficient algorithm that explicitly incorporates sequence reads that map to multiple genomic loci. Our model fully accounts for sequencing error, template bias, and multi-locus SNP combinations, maintaining high sensitivity and specificity under a broad range of conditions.
View Article and Find Full Text PDFBackground: Gene expression is a dynamic trait, and the evolution of gene regulation can dramatically alter the timing of gene expression without greatly affecting mean expression levels. Moreover, modules of co-regulated genes may exhibit coordinated shifts in expression timing patterns during evolutionary divergence. Here, we examined transcriptome evolution in the dynamical context of the budding yeast cell-division cycle, to investigate the extent of divergence in expression timing and the regulatory architecture underlying timing evolution.
View Article and Find Full Text PDF