The inhibition of Fcγ receptors (FcγR) is an attractive strategy for treating diseases driven by IgG immune complexes (IC). Previously, we demonstrated that an engineered tri-valent arrangement of IgG1 Fc domains (SIF1) potently inhibited FcγR activation by IC, whereas a penta-valent Fc molecule (PentX) activated FcγR, potentially mimicking ICs and leading to Syk phosphorylation. Thus, a precise balance exists between the number of engaged FcγRs for inhibition versus activation.
View Article and Find Full Text PDFAdenoid cystic carcinoma (ACC) of the lacrimal gland is an aggressive, malignant epithelial neoplasm. This tumor is rarely seen in adults and even less commonly seen in children and adolescents; thus, there have been no large studies to date describing the optimal treatment of this malignancy in the pediatric population. Here, we report a case of lacrimal gland ACC in a 14-year-old male treated with neoadjuvant intra-arterial chemotherapy followed by globe-sparing tumor resection and chemoradiation.
View Article and Find Full Text PDFAutoantibody immune complex (IC) activation of Fcγ receptors (FcγRs) is a common pathogenic hallmark of multiple autoimmune diseases. Given that the IC structural features that elicit FcγR activation are poorly understood and the FcγR system is highly complex, few therapeutics can directly block these processes without inadvertently activating the FcγR system. To address these issues, the structure activity relationships of an engineered panel of multivalent Fc constructs were evaluated using sensitive FcγR binding and signaling cellular assays.
View Article and Find Full Text PDFBSEP, MDR1, and MDR2 ATP binding cassette transporters are targeted to the apical (canalicular) membrane of hepatocytes, where they mediate ATP-dependent secretion of bile acids, drugs, and phospholipids, respectively. Sorting to the apical membrane is essential for transporter function; however, little is known regarding cellular proteins that bind ATP binding cassette proteins and regulate their trafficking. A yeast two-hybrid screen of a rat liver cDNA library identified the myosin II regulatory light chain, MLC2, as a binding partner for BSEP, MDR1, and MDR2.
View Article and Find Full Text PDFATP-binding cassette (ABC)-type proteins are essential for bile formation in vertebrate liver. BSEP, MDR1, MDR2, and MRP2 ABC transporters are targeted to the apical (canalicular) membrane of hepatocytes where they execute ATP-dependent transport of bile acids, drugs, amphipathic cations, phospholipids, and conjugated organic anions, respectively. Changes in activity and abundance of transporters in the canalicular membrane regulate bile flow; however, little is known regarding cellular proteins that bind ABC transporters and regulate their trafficking.
View Article and Find Full Text PDF