Publications by authors named "Daniel F Cruz"

Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity.

View Article and Find Full Text PDF

In the plant sciences, results of laboratory studies often do not translate well to the field. To help close this lab-field gap, we developed a strategy for studying the wiring of plant traits directly in the field, based on molecular profiling and phenotyping of individual plants. Here, we use this single-plant omics strategy on winter-type Brassica napus (rapeseed).

View Article and Find Full Text PDF

Lemur tyrosine kinase 2 (LMTK2) is a transmembrane Ser/Thr kinase whose role has been increasingly recognized; however, when compared to other kinases, understanding of the LMTK2 networks and biological functions is still limited. Recent data have shown that transforming growth factor (TGF)-β1 plays a role in modulating LMTK2 function by controlling its endocytic trafficking in human bronchial epithelial cells. Here, we aimed to unveil the LMTK2 regulatory network and elucidate how it affects cellular functions and disease pathways in either TGF-β1 dependent or independent manner.

View Article and Find Full Text PDF

Most of our current knowledge on plant molecular biology is based on experiments in controlled laboratory environments. However, translating this knowledge from the laboratory to the field is often not straightforward, in part because field growth conditions are very different from laboratory conditions. Here, we test a new experimental design to unravel the molecular wiring of plants and study gene-phenotype relationships directly in the field.

View Article and Find Full Text PDF

The most common disease-causing mutation in the gene, F508del, leads to cystic fibrosis (CF), by arresting CFTR processing and trafficking to the plasma membrane. The FDA-approved modulators partially restore CFTR function and slow down the progression of CF lung disease by increasing processing and delivery to the plasma membrane and improving activity of F508del-CFTR Cl channels. However, the modulators do not correct compromised membrane stability of rescued F508del-CFTR.

View Article and Find Full Text PDF

Lemur Tyrosine Kinase 2 (LMTK2) is a recently cloned transmembrane protein, actually a serine/threonine kinase named after the Madagascar primate lemur due to the long intracellular C-terminal tail. LMTK2 is relatively little known, compared to other kinases but its role has been increasingly recognized. Published data show that LMTK2 regulates key cellular events, including endocytic trafficking, nerve growth factor signaling, apoptosis, and Cl transport.

View Article and Find Full Text PDF

Number of spikelets per panicle (NSP) is a key trait to increase yield potential in rice (). The architecture of the rice inflorescence which is mainly determined by the length and number of primary (PBL and PBN) and secondary (SBL and SBN) branches can influence NSP. Although several genes controlling panicle architecture and NSP in rice have been identified, there is little evidence of (i) the genetic control of panicle architecture and NSP in different environments and (ii) the presence of stable genetic associations with panicle architecture across environments.

View Article and Find Full Text PDF

Background: Therecent development and availability of different genotype by sequencing (GBS) protocols provided a cost-effective approach to perform high-resolution genomic analysis of entire populations in different species. The central component of all these protocols is the digestion of the initial DNA with known restriction enzymes, to generate sequencing fragments at predictable and reproducible sites. This allows to genotype thousands of genetic markers on populations with hundreds of individuals.

View Article and Find Full Text PDF

Highlights: Male fertility decline has been attributed, in part, to increased oxidative stress.Here we will focus on spermatozoa ROS, namely O2, NO and ONOO and their contribution to protein tyrosine nitration, namely by 3-NT formation.An in depth review will be made on the methods used to detect protein oxidation.

View Article and Find Full Text PDF

Objective: To study the effects of an acute lifestyle change in human semen oxidative stress (OS) by applying seminal parameters and OS markers and to study the feasibility of mid-infrared spectroscopy with Fourier transform infrared spectroscopy (FT-IR) as a complementary tool to evaluate the effects of OS on human sperm samples.

Material And Methods: Sperm samples were collected from healthy male students (n=8) who voluntarily submitted themselves to acute lifestyle changes during academic festivities. The samples were obtained before and after the academic festivities and were compared by basic semen analyses and OS markers, namely with thiobarbituric acid reactive species (TBARS) and total thiol (SH) groups by spectrophotometric assays and carbonyl (CO) groups by slot blot.

View Article and Find Full Text PDF

Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa.

View Article and Find Full Text PDF

Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications.

View Article and Find Full Text PDF