Vertebrates usually have three class V myosin paralogues (MyoV) to control membrane trafficking in the actin-rich cell cortex, but their functional overlapping or differentiation through cargoes selectivity is yet only partially understood. In this work, we reveal that the globular tail domain of MyoVc binds to the active form of small GTPase Rab3A with nanomolar affinity, a feature shared with MyoVa but not with MyoVb. Using molecular docking analyses guided by chemical cross-linking restraints, we propose a model to explain how Rab3A selectively recognizes MyoVa and MyoVc via a distinct binding site from that used by Rab11A.
View Article and Find Full Text PDFAqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels).
View Article and Find Full Text PDF