Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for the validation and transfer of human control strategies.
View Article and Find Full Text PDFBackground: In Hereditary Spastic Paraplegia (HSP) type 4 (SPG4) a length-dependent axonal degeneration in the cortico-spinal tract leads to progressing symptoms of hyperreflexia, muscle weakness, and spasticity of lower extremities. Even before the manifestation of spastic gait, in the prodromal phase, axonal degeneration leads to subtle gait changes. These gait changes - depicted by digital gait recording - are related to disease severity in prodromal and early-to-moderate manifest SPG4 participants.
View Article and Find Full Text PDFNeuromuscular control loops feature substantial communication delays, but mammals run robustly even in the most adverse conditions. experiments and computer simulation results suggest that muscles' preflex-an immediate mechanical response to a perturbation-could be the critical contributor. Muscle preflexes act within a few milliseconds, an order of magnitude faster than neural reflexes.
View Article and Find Full Text PDFThe intersection of ground reaction forces near a point above the center of mass has been observed in computer simulation models and human walking experiments. Observed so ubiquitously, the intersection point (IP) is commonly assumed to provide postural stability for bipedal walking. In this study, we challenge this assumption by questioning if walking without an IP is possible.
View Article and Find Full Text PDFMuscle fibres possess unique visco-elastic properties, which generate a stabilising zero-delay response to unexpected perturbations. This instantaneous response-termed "preflex"-mitigates neuro-transmission delays, which are hazardous during fast locomotion due to the short stance duration. While the elastic contribution to preflexes has been studied extensively, the function of fibre viscosity due to the force-velocity relation remains unknown.
View Article and Find Full Text PDFBackground: In hereditary spastic paraplegia type 4 (SPG4), subclinical gait changes might occur years before patients realize gait disturbances. The prodromal phase of neurodegenerative disease is of particular interest to halt disease progression by future interventions before impairment has manifested.
Objective: The objective of this study was to identify specific movement abnormalities before the manifestation of gait impairment and quantify disease progression in the prodromal phase.
Previous simulation studies investigated the role of reflexes and central pattern generators to explain the kinematic and dynamic adaptations in reaction to step-down perturbations. However, experiments also show preparatory adaptations in humans based on visual anticipation of a perturbation. In this study, we propose a high-level anticipatory strategy augmenting a low-level muscle-reflex control.
View Article and Find Full Text PDFActive goal-directed motion requires real-time adjustment of control signals depending on the system's status, also known as control. The amount of information that needs to be processed depends on the desired motion and control, and on the system's morphology. The morphology of the system may directly effectuate or support the desired motion.
View Article and Find Full Text PDFThe maximum running speed of legged animals is one evident factor for evolutionary selection-for predators and prey. Therefore, it has been studied across the entire size range of animals, from the smallest mites to the largest elephants, and even beyond to extinct dinosaurs. A recent analysis of the relation between animal mass (size) and maximum running speed showed that there seems to be an optimal range of body masses in which the highest terrestrial running speeds occur.
View Article and Find Full Text PDFA key problem for biological motor control is to establish a link between an idea of a movement and the generation of a set of muscle-stimulating signals that lead to the movement execution. The number of signals to generate is thereby larger than the body's mechanical degrees of freedom in which the idea of the movement may be easily expressed, as the movement is actually executed in this space. A mathematical formulation that provides a solving link is presented in this paper in the form of a layered, hierarchical control architecture.
View Article and Find Full Text PDFVoluntary movements, like point-to-point or oscillatory human arm movements, are generated by the interaction of several structures. High-level neuronal circuits in the brain are responsible for planning and initiating a movement. Spinal circuits incorporate proprioceptive feedback to compensate for deviations from the desired movement.
View Article and Find Full Text PDFMuscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of physical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising.
View Article and Find Full Text PDFIt is hypothesized that the nonlinear muscle characteristic of biomechanical systems simplify control in the sense that the information the nervous system has to process is reduced through off-loading computation to the morphological structure. It has been proposed to quantify the required information with an information-entropy based approach, which evaluates the minimally required information to control a desired movement, i.e.
View Article and Find Full Text PDFTo understand the organization and efficiency of biological movement, it is important to evaluate the energy requirements on the level of individual muscles. To this end, predicting energy expenditure with musculoskeletal models in forward-dynamic computer simulations is currently the most promising approach. However, it is challenging to validate muscle models in humans, because access to the energy expenditure of single muscles is difficult.
View Article and Find Full Text PDFHuman arm movements are highly stereotypical under a large variety of experimental conditions. This is striking due to the high redundancy of the human musculoskeletal system, which in principle allows many possible trajectories toward a goal. Many researchers hypothesize that through evolution, learning, and adaption, the human system has developed optimal control strategies to select between these possibilities.
View Article and Find Full Text PDFInitiated by neural impulses and subsequent calcium release, skeletal muscle fibers contract (actively generate force) as a result of repetitive power strokes of acto-myosin cross-bridges. The energy required for performing these cross-bridge cycles is provided by the hydrolysis of adenosine triphosphate (ATP). The reaction products, adenosine diphosphate (ADP) and inorganic phosphate (P ), are then used-among other reactants, such as creatine phosphate-to refuel the ATP energy storage.
View Article and Find Full Text PDFHuman movement is generated by a dynamic interplay between the nervous system, the biomechanical structures, and the environment. To investigate this interaction, we propose a neuro-musculoskeletal model of human goal-directed arm movements. Using this model, we simulated static perturbations of the inertia and damping properties of the arm, as well as dynamic torque perturbations for one-degree-of freedom movements around the elbow joint.
View Article and Find Full Text PDFIt is often assumed that the spinal control of human locomotion combines feed-forward central pattern generation with sensory feedback via muscle reflexes. However, the actual contribution of each component to the generation and stabilization of gait is not well understood, as direct experimental evidence for either is difficult to obtain. We here investigate the relative contribution of the two components to gait stability in a simulation model of human walking.
View Article and Find Full Text PDFMeasuring, analysing, and modelling muscle contraction has a long history. In consequence, some signature characteristics of skeletal muscle contraction have been found. On a microscopic level, these are the typical non-steady-state responses of the cross-bridge bindings to steps in force and length.
View Article and Find Full Text PDFBackground: In the state of the art finite element AHBMs for car crash analysis in the LS-DYNA software material named *MAT_MUSCLE (*MAT_156) is used for active muscles modeling. It has three elements in parallel configuration, which has several major drawbacks: restraint approximation of the physical reality, complicated parameterization and absence of the integrated activation dynamics. This study presents implementation of the extended four element Hill-type muscle model with serial damping and eccentric force-velocity relation including [Formula: see text] dependent activation dynamics and internal method for physiological muscle routing.
View Article and Find Full Text PDFDetailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants.
View Article and Find Full Text PDFWe experimentally and numerically study the dependence of different navigation strategies regarding the effectivity of an active particle to reach a predefined target area. As the only control parameter, we vary the particle's propulsion velocity depending on its position and orientation relative to the target site. By introducing different figures of merit, e.
View Article and Find Full Text PDFComput Math Methods Med
March 2013
It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated accelerated contractions of alternating sequences of Hill-type contractile elements and point masses.
View Article and Find Full Text PDF