Background: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort.
View Article and Find Full Text PDFSocial insect castes (e.g., queens, workers) are prime examples of phenotypic plasticity (i.
View Article and Find Full Text PDFDivision of labour occurs in a broad range of organisms. Yet, how division of labour can emerge in the absence of pre-existing interindividual differences is poorly understood. Using a simple but realistic model, we show that in a group of initially identical individuals, division of labour emerges spontaneously if returning foragers share part of their resources with other group members.
View Article and Find Full Text PDFDivision of labour characterizes all major evolutionary transitions, such as the evolution of eukaryotic cells or multicellular organisms. Social insects are characterized by reproductive division of labour, with one or a few reproducing individuals (queens) and many non-reproducing nestmates (workers) forming a colony. Among the workers, further division of labour can occur with different individuals performing different tasks such as foraging, brood care or building.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2021
The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects.
View Article and Find Full Text PDFProtein kinase D (PKD) is an essential Ser/Thr kinase in animals and controls a variety of diverse cellular functions, including vesicle trafficking and mitogenesis. PKD is activated by recruitment to membranes containing the lipid second messenger diacylglycerol (DAG) and subsequent phosphorylation of its activation loop. Here, we report the crystal structure of the PKD N terminus at 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
Social insects are promising new models in aging research. Within single colonies, longevity differences of several magnitudes exist that can be found elsewhere only between different species. Reproducing queens (and, in termites, also kings) can live for several decades, whereas sterile workers often have a lifespan of a few weeks only.
View Article and Find Full Text PDFAustralas Psychiatry
February 2018
Objective: The objective of this study was to review the clinical significance of the experience of chronic emptiness in borderline personality disorder (BPD).
Methods: A systematic search of the literature was conducted using MEDLINE and PubMed, employing search terms including 'emptiness', 'personality disorder' and 'borderline personality disorder'. The most relevant English-language articles and books were selected for this review.
Ageing is a feature of nearly all known organisms and, by its connection to survival, appears to trade off with fecundity. However, in some organisms such as in queens of social insects, this negative relation appears reversed and individuals live long and reproduce much. Since new experimental techniques, transcriptomes and genomes of many social insects have recently become available, a comparison of these data in a phylogenetic framework becomes feasible.
View Article and Find Full Text PDFThe Rho-associated coiled-coil containing kinases (ROCK) were first identified as effectors of the small GTPase RhoA, hence their nomenclature. Since their discovery, two decades ago, scientists have sought to unravel the structure, regulation, and function of these essential kinases. During that time, a consensus model has formed, in which ROCK activity is regulated via both Rho-dependent and independent mechanisms.
View Article and Find Full Text PDFThe Rho-associated coiled-coil kinases (ROCK) are essential regulators of the actin cytoskeleton; however, the structure of a full-length ROCK is unknown and the mechanisms by which its kinase activity is controlled are not well understood. Here we determine the low-resolution structure of human ROCK2 using electron microscopy, revealing it to be a constitutive dimer, 120 nm in length, with a long coiled-coil tether linking the kinase and membrane-binding domains. We find, in contrast to previous reports, that ROCK2 activity does not appear to be directly regulated by binding to membranes, RhoA, or by phosphorylation.
View Article and Find Full Text PDF