Objectives: Chronic pain is primarily treated with pharmaceuticals, but the effects remain unsatisfactory. A promising alternative therapy is peripheral nerve stimulation (PNS), but it has been associated with suboptimal efficacy because its modulation mechanisms are not clear and the current therapies are primarily open loop (ie, manually adjusting the stimulation parameters). In this study, we developed a proof-of-concept computational modeling as the first step toward implementing closed-loop PNS in future biological studies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Approximately 30% of patients with epilepsy do not respond to anti-epileptogenic drugs. Surgical removal of the epileptogenic zone (EZ), the brain regions where the seizures originate and spread, can be a possible therapy for these patients, but localizing the EZ is challenging due to a variety of clinical factors. High-frequency oscillations (HFOs) in intracranial electroencephalography (EEG) are a promising biomarker of the EZ, but it is currently unknown whether HFO rates and HFO morphology modulate as pathological brain networks evolve in a way that gives rise to seizures.
View Article and Find Full Text PDFObjective: To develop an adaptive framework for seizure detection in real-time that is practical to use in the Epilepsy Monitoring Unit (EMU) as a warning signal, and whose output helps characterize epileptiform activity.
Methods: Our algorithm was tested on intracranial EEG from epilepsy patients admitted to the EMU for presurgical evaluation. Our framework uses a one-class Support Vector Machine (SVM) that is being trained dynamically according to past activity in all available channels to classify the novelty of the current activity.
Annu Int Conf IEEE Eng Med Biol Soc
July 2020
Epilepsy affects over 50 million people worldwide and 30% of patients' seizures are medically refractory. The process of localizing and removing the epileptogenic zone is error-prone and ill-posed in part because we do not understand how epilepsy manifests. It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Epilepsy affects over 70 million people worldwide and 30% of patients' seizures cannot be controlled with medications, motivating the development of alternative therapies such as electrical stimulation. Current stimulation strategies attempt to stop seizures after they start, but none aim to prevent seizures altogether. Preventing seizures requires knowing when the brain is entering a preictal state (i.
View Article and Find Full Text PDFIt has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. Closed-loop therapy could therefore entail detecting when the network goes unstable, and then stimulating with an exogenous current to stabilize the network. In this study, a non-linear stochastic model of a neuronal network was used to simulate both seizure and non-seizure activity.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. Therefore, one method for detecting seizures is to detect when the neuronal network has gone unstable. This is important for implementing a closed-loop therapy to suppress seizures.
View Article and Find Full Text PDF