Background: Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables.
View Article and Find Full Text PDFBackground: Obesity in asthmatics has been associated with higher airway oxidative stress in which dysfunctional mitochondria are a potential contributing source of excess free radicals. Paraoxonase 2 (PON2) plays an important role in reducing mitochondrial-derived oxidative stress and could, therefore, have therapeutic potential in these patients.
Objectives: We used primary human bronchial epithelial cells (HBECs) from asthmatics and healthy controls to evaluate: a) protein levels of Paraoxonase 2 and b) to test the potential protective effect of quercetin supplementation in cells under oxidative stress conditions.
Obesity is the most common asthma co-morbidity; it has been associated with increased risk for asthma exacerbations, worse respiratory symptoms and poor control. The exact mechanisms remain elusive and are probably multifactorial, stemming from mechanical alterations of the airways and lung parenchyma, to systemic and airway inflammatory and metabolic dysregulation that adversely influences lung function and or response to therapy. However, the fact that not every obese asthmatic is equally affected by weight gain highlights the many challenges and complexities in understanding this association.
View Article and Find Full Text PDF