Publications by authors named "Daniel E Young"

Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity.

View Article and Find Full Text PDF

A shifted field of view, an altered perception of optic flow speed, and gait asymmetries may influence heading direction in Parkinson's disease (PD). PD participants (left body-side onset, LPD, n=14; right body-side onset, RPD, n=9) and Healthy Control participants (n=17) walked a virtual hallway in which the optic flow speeds of the walls varied. Three-dimensional kinematics showed participants veered away from the faster moving wall.

View Article and Find Full Text PDF