Publications by authors named "Daniel E Wagner"

Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.

View Article and Find Full Text PDF
Article Synopsis
  • Developmental biology isn't as popular or well-funded as it used to be, and other science fields are getting more attention instead.
  • A group of scientists from different parts of developmental biology met to discuss problems that are slowing down new discoveries and to suggest ways to fix them.
  • They want to "rebrand" the field, get more funding, encourage teamwork between different science areas, improve how science is taught, communicate better, and make sure everyone has equal opportunities and resources.
View Article and Find Full Text PDF

Signals from the surrounding niche drive proliferation and suppress differentiation of intestinal stem cells (ISCs) at the bottom of intestinal crypts. Among sub-epithelial support cells, deep sub-cryptal CD81 PDGFRA trophocytes capably sustain ISC functions ex vivo. Here, we show that mRNA and chromatin profiles of abundant CD81 PDGFRA mouse stromal cells resemble those of trophocytes and that both populations provide crucial canonical Wnt ligands.

View Article and Find Full Text PDF

A fundamental goal of developmental and stem cell biology is to map the developmental history (ontogeny) of differentiated cell types. Recent advances in high-throughput single-cell sequencing technologies have enabled the construction of comprehensive transcriptional atlases of adult tissues and of developing embryos from measurements of up to millions of individual cells. Parallel advances in sequencing-based lineage-tracing methods now facilitate the mapping of clonal relationships onto these landscapes and enable detailed comparisons between molecular and mitotic histories.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how the spine develops in humans and mice, focusing on a special process in cells called the segmentation clock.
  • They found that although human and mouse cells have different timing for this process, they still follow a similar pattern and are influenced by the same signals.
  • This research helps us understand more about human development and how it might be similar to what happens in mice.
View Article and Find Full Text PDF

More than twelve morphologically and physiologically distinct subtypes of primary somatosensory neuron report salient features of our internal and external environments. It is unclear how specialized gene expression programs emerge during development to endow these subtypes with their unique properties. To assess the developmental progression of transcriptional maturation of each subtype of principal somatosensory neuron, we generated a transcriptomic atlas of cells traversing the primary somatosensory neuron lineage in mice.

View Article and Find Full Text PDF

Wnt signaling regulates primary body axis formation across the Metazoa, with high Wnt signaling specifying posterior identity. Whether a common Wnt-driven transcriptional program accomplishes this broad role is poorly understood. We identified genes acutely affected after Wnt signaling inhibition in the posterior of two regenerative species, the planarian Schmidtea mediterranea and the acoel Hofstenia miamia, which are separated by >550 million years of evolution.

View Article and Find Full Text PDF

Stem cells, which both self-renew and produce differentiated progeny, represent fundamental biological units for the development, growth, maintenance, and regeneration of adult tissues. Characterization of stem cell lineage potential can be accomplished with clonal assays that interrogate stem cell output at the single-cell level. Here we present two methods for clonal analysis of individual proliferative cells (neoblasts) in the planarian Schmidtea mediterranea.

View Article and Find Full Text PDF

High-throughput mapping of cellular differentiation hierarchies from single-cell data promises to empower systematic interrogations of vertebrate development and disease. Here we applied single-cell RNA sequencing to >92,000 cells from zebrafish embryos during the first day of development. Using a graph-based approach, we mapped a cell-state landscape that describes axis patterning, germ layer formation, and organogenesis.

View Article and Find Full Text PDF

Time series of single-cell transcriptome measurements can reveal dynamic features of cell differentiation pathways. From measurements of whole frog embryos spanning zygotic genome activation through early organogenesis, we derived a detailed catalog of cell states in vertebrate development and a map of differentiation across all lineages over time. The inferred map recapitulates most if not all developmental relationships and associates new regulators and marker genes with each cell state.

View Article and Find Full Text PDF

The lineage relationships among the hundreds of cell types generated during development are difficult to reconstruct. A recent method, GESTALT, used CRISPR-Cas9 barcode editing for large-scale lineage tracing, but was restricted to early development and did not identify cell types. Here we present scGESTALT, which combines the lineage recording capabilities of GESTALT with cell-type identification by single-cell RNA sequencing.

View Article and Find Full Text PDF

Regeneration requires that the identities of new cells are properly specified to replace missing tissues. The Wnt signaling pathway serves a central role in specifying posterior cell fates during planarian regeneration. We identified a gene encoding a homolog of the Teashirt family of zinc-finger proteins in the planarian Schmidtea mediterranea to be a target of Wnt signaling in intact animals and at posterior-facing wounds.

View Article and Find Full Text PDF

Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear.

View Article and Find Full Text PDF

Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration instructions are unknown.

View Article and Find Full Text PDF

Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts).

View Article and Find Full Text PDF

Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown.

View Article and Find Full Text PDF

Protein design studies using coiled coils have illustrated the potential of engineering simple peptides to self-associate into polymers and networks. Although basic aspects of self-assembly in protein systems have been demonstrated, it remains a major challenge to create materials whose large-scale structures are well determined from design of local protein-protein interactions. Here, we show the design and characterization of a helical peptide, which uses phased hydrophobic interactions to drive assembly into nanofilaments and fibrils ("nanoropes").

View Article and Find Full Text PDF