Microfluidic-based devices have allowed miniaturization and increased parallelism of many common functions in biological assays; however, development of a practical technology for microfluidic-based fluorescence-activated cell sorting has proved challenging. Although a variety of different physical on-chip switch mechanisms have been proposed, none has satisfied simultaneously the requirements of high throughput, purity, and recovery of live, unstressed mammalian cells. Here we show that optical forces can be used for the rapid (2-4 ms), active control of cell routing on a microfluidic chip.
View Article and Find Full Text PDF