Publications by authors named "Daniel E Prober"

Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes.

View Article and Find Full Text PDF

The extremely small size of plasmonic antennas has made it difficult to integrate them with nanoscale detectors that require electrical leads, as the leads tend to degrade the resonant properties of the antenna. We present a design for integrating a plasmonic antenna with a nanoscale superconducting transition-edge sensor (TES) with electrical leads. Numerical simulations demonstrate high-efficiency coupling of 1550 nm incident photons into the sub-wavelength TES.

View Article and Find Full Text PDF

We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of the thermal conductance associated with cooling of the nanotube electron system.

View Article and Find Full Text PDF

We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH µm(-1) for NbN and 44 pH µm(-1) for Nb at a temperature of 2.

View Article and Find Full Text PDF