Advancements in polymer chemistry have enabled the design of macromolecular structures with tailored properties for diverse applications. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a controlled technique for precise polymer design. Automation tools further enhance polymer synthesis by enabling the rapid, reproducible preparation of polymer libraries.
View Article and Find Full Text PDFSacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores.
View Article and Find Full Text PDFAdditive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices, aerospace components, microfabrication strategies and artificial organs. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization, projection micro stereolithography and volumetric printing, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds.
View Article and Find Full Text PDFEngineering biointerfaces with nanoscale clustering of integrin-binding cell adhesive peptides is critical for promoting receptor redistribution into signaling complexes. Skeletal muscle cells are exquisitely sensitive to integrin-mediated signaling, yet biomaterials supporting myogenesis through control of the density and nanodistribution of ligands have not been developed. Here, materials are developed with tailorable cell adhesive ligands distribution at the interface by independently controlling their global and local density to enhance myogenesis, by promoting myoblast growth and myotube formation.
View Article and Find Full Text PDFA major roadblock in implementing engineered tissues clinically lies in their limited vascularization. After implantation, such tissues do not integrate with the host's circulation as quickly as needed, commonly resulting in loss of viability and functionality. This study presents a solution to the vascularization problem that could enable the survival and function of large, transplantable, and vascularized engineered tissues.
View Article and Find Full Text PDFCardiovascular diseases are a major global health challenge. Blood vessel disease and dysfunction are major contributors to this healthcare burden, and the development of tissue-engineered vascular grafts (TEVGs) is required, particularly for the replacement of small-diameter vessels. Silk fibroin (SF) is a widely used biomaterial for TEVG fabrication due to its high strength and biocompatibility.
View Article and Find Full Text PDFDecellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs.
View Article and Find Full Text PDFCoronary artery stents are life-saving devices, and millions of these devices are implanted annually to treat coronary heart disease. The current gold standard in treatment is drug-eluting stents, which are coated with a biodegradable polymer layer that elutes antiproliferative drugs to prevent restenosis due to neointimal hyperplasia. Stenting is commonly paired with systemic antiplatelet therapy to prevent stent thrombosis.
View Article and Find Full Text PDFAcoustofluidic micromanipulation is an important tool for biomedical research, where acoustic forces offer the ability to manipulate fluids, cells, and particles in a rapid, biocompatible, and contact-free manner. Of particular interest is the investigation of acoustically driven sharp edges, where high tip velocity magnitudes and strong acoustic potential gradients drive rapid motion. Whereas prior devices utilizing 2D sharp edges have demonstrated promise for micromanipulation activities, taking advantage of 3D structures has the potential to increase their performance and the range of manipulation activities.
View Article and Find Full Text PDFJ Control Release
November 2023
Polyurethanes are a versatile and highly tunable class of materials that possess unique properties including high tensile strength, abrasion and fatigue resistance, and flexibility at low temperatures. The tunability of polyurethane properties has allowed this class of polymers to become ubiquitous in our daily lives in fields as diverse as apparel, appliances, construction, and the automotive industry. Additionally, polyurethanes with excellent biocompatibility and hemocompatibility can be synthesized, enabling their use as biomaterials in the medical field.
View Article and Find Full Text PDFTissue-engineered vascular grafts (TEVGs) have emerged as a potential alternative to autologous grafts for replacing small-diameter blood vessels during bypass surgery. The axial alignment of endothelial cells (ECs) and the circumferential alignment of smooth muscle cells (SMCs) are crucial for functional native blood vessels (NBVs). However, achieving this cellular alignment in TEVGs remains a formidable challenge.
View Article and Find Full Text PDFFungal infections pose a serious threat to human health and livelihoods. The number and variety of clinically approved antifungal drugs is very limited, and the emergence and rapid spread of resistance to these drugs means the impact of fungal infections will increase in the future unless alternatives are found. Despite the significance and major challenges associated with fungal infections, this topic receives significantly less attention than bacterial infections.
View Article and Find Full Text PDFDecellularized extracellular matrix (dECM) deposited by mesenchymal stromal cells (MSCs) has emerged as a promising substrate for improved expansion of MSCs. To date, essentially all studies that have produced dECM for MSC expansion have done so on tissue culture plastic or glass. However, substrate surface chemistry has a profound impact on the adsorption of proteins that mediate cell-material interactions, and different surface chemistries can cause changes in cell behavior, ECM deposition, and the response to a material.
View Article and Find Full Text PDFBiodegradable coronary artery stents are sought-after alternatives to permanent stents. These devices are designed to degrade after the blood vessel heals, leaving behind a regenerated artery. The original generation of clinically available biodegradable stents required significantly thicker struts (∼150 μm) than nondegradable ones to ensure sufficient mechanical strength.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Antibiotic-resistant bacteria are a severe threat to human health. The World Health Organization's Global Antimicrobial Surveillance System has revealed widespread occurrence of antibiotic resistance among half a million patients across 22 countries, with , , and being the most common resistant species. Antimicrobial nanoparticles are emerging as a promising alternative to antibiotics in the fight against antimicrobial resistance.
View Article and Find Full Text PDFMicrobial colonization, infection, and biofilm formation are major complications in the use of implants and are the predominant risk factors in implant failure. Although aseptic surgery and the administration of antimicrobial drugs may reduce the risk of infection, the systemic use of antibiotics can lead to a lack of efficacy, an increase in the risk of tissue toxicity, and the development of drug-resistant infections. To reduce implant-related infections, antimicrobial materials are increasingly being investigated and applied to implant surfaces using various methods depending on the agents and their microbicidal mechanisms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2020
Purpose: Selenium nanoparticles (Se NPs) are promising antibacterial agents to tackle the growing problem of antimicrobial resistance. The aim of this study was to fabricate Se NPs with a net positive charge to enhance their antibacterial efficacy.
Methods: Se NPs were coated with a positively charged protein - recombinant spider silk protein eADF4(κ16) - to give them a net positive surface charge.
We have engineered biomaterials that display nanoclusters of ligands that bind both integrin and syndecan-4 cell receptors. These surfaces regulate cell behaviors under static conditions including adhesion, spreading, actin stress fiber formation, and migration. The syndecan-4 receptors are also critical mediators of cellular mechanotransduction.
View Article and Find Full Text PDFThe overuse of antibiotics has induced the rapid development of antibiotic resistance in bacteria. As a result, antibiotic efficacy has become limited, and infection with multidrug-resistant bacteria is considered to be one of the largest global human health threats. Consequently, new, effective and safe antimicrobial agents need to be developed urgently.
View Article and Find Full Text PDFCoatings produced from extracellular matrixes (ECMs) have emerged as promising surfaces for the improved ex vivo expansion of mesenchymal stem cells (MSCs). However, identifying a readily available source of ECM to generate these coatings is currently the bottleneck of this technology. In this study, we assessed if ECM coatings derived from decellularized fetal membranes were a suitable substrate for MSC expansion.
View Article and Find Full Text PDFBiomaterials are a powerful platform for directing cellular behaviour. Herein, we employed a biomimetic strategy to synthesize a low-fouling polymer functionalized with nano-scale clusters of ligands that bind both integrin and syndecan-4 receptors, as both receptor types are critical in focal adhesion signalling and mechanotransduction. Our results demonstrate that the presence of both ligand types synergistically increases the adhesion of human umbilical vein endothelial cells (more than a two fold increase after 4 h) and increases the rate of surface endothelialization compared to surfaces functionalized with only one ligand type.
View Article and Find Full Text PDFDecellularized extracellular matrixes (dECM) derived from mesenchymal stem cell (MSC) cultures have recently emerged as cell culture substrates that improve the proliferation, differentiation, and maintenance of MSC phenotype during ex vivo expansion. These biomaterials have considerable potential in the fields of stem cell biology, tissue engineering, and regenerative medicine. Processing the dECMs into concentrated solutions of biomolecules that enable the useful properties of the native dECM to be transferred to a new surface via a simple adsorption step would greatly increase the usefulness and impact of this technology.
View Article and Find Full Text PDF