Control of atmospheric CO is an important contemporary scientific and engineering challenge. Toward this goal, the reaction of CO with amines to form carbamate bonds is an established method for CO capture. However, controllable reversal of this reaction remains difficult and requires tuning the energetics of the carbamate bond.
View Article and Find Full Text PDFSemiconductor nanocrystals (NCs) interfaced with molecular ligands that function as charge and energy acceptors are an emerging platform for the design of light-harvesting, photon-upconverting, and photocatalytic materials. However, NC systems explored for these applications often feature high concentrations of bound acceptor ligands, which can lead to ligand-ligand interactions that may alter each system's ability to undergo charge and energy transfer. Here, we demonstrate that aggregation of acceptor ligands impacts the rate of photoinduced NC-to-ligand charge transfer between lead(II) sulfide (PbS) NCs and perylenediimide (PDI) electron acceptors.
View Article and Find Full Text PDFSymmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss.
View Article and Find Full Text PDFSum-frequency generation (SFG) spectroscopy has furthered our understanding of the chemical interfaces that guide key processes in biology, catalysis, environmental science, and energy conversion. However, interpreting SFG spectra of systems containing several internal interfaces, such as thin film electronics, electrochemical cells, and biofilms, is challenging as different interfaces within these structures can produce interfering SFG signals. One potential way to address this issue is to carefully select experimental conditions that amplify the SFG signal of an interface of interest over all others.
View Article and Find Full Text PDFDue to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge.
View Article and Find Full Text PDF