Publications by authors named "Daniel Druckenbrod"

Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. In this study, we reveal a new mechanism of soil biogeochemical control of large-scale vegetation water use. Nitrate and sulfate deposition from fossil fuel burning have caused substantial soil acidification, leading to the leaching of soil base cations.

View Article and Find Full Text PDF

Modeling and forecasting forests as carbon sinks require that we understand the primary factors affecting productivity. One factor thought to be positively related to stand productivity is the degree of asymmetry, or the slope of the relationship between tree size and biomass growth. Steeper slopes indicate disproportionate productivity of big trees relative to small trees.

View Article and Find Full Text PDF

Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization.

View Article and Find Full Text PDF

Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi-arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change.

View Article and Find Full Text PDF

Habitat valuation methods were implemented to support remedial decisions for aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, TN, USA. The habitat valuation was undertaken for six contaminated sites: Contractor's Spoil Area, K-901-N Disposal Area, K-770 Scrapyard, K-1007-P1 pond, K-901 pond, and the Mitchell Branch stream. Four of these sites are within the industrial use area of ETTP and two are in the Black Oak Ridge Conservation Easement.

View Article and Find Full Text PDF

Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy Oak Ridge Reservation in Oak Ridge, TN, USA.

View Article and Find Full Text PDF