Context: Recent evidence suggests that vasomotor symptoms (VMS) or hot flashes in the postmenopausal reproductive state and polycystic ovary syndrome (PCOS) in the premenopausal reproductive state emanate from the hyperactivity of Kiss1 neurons in the hypothalamic infundibular/arcuate nucleus (KNDy neurons).
Objective: We demonstrate in 2 murine models simulating menopause and PCOS that a peripherally restricted kappa receptor agonist (PRKA) inhibits hyperactive KNDy neurons (accessible from outside the blood-brain barrier) and impedes their downstream effects.
Design: Case/control.
The alternation of the stimulatory action of the tachykinin neurokinin B (NKB) and the inhibitory action of dynorphin within arcuate (ARH) Kiss1 neurons has been proposed as the mechanism behind the generation of gonadotropin-releasing hormone (GnRH) pulses through the pulsatile release of kisspeptin. However, we have recently documented that GnRH pulses still exist in gonadectomized mice in the absence of tachykinin signaling. Here, we document an increase in basal frequency and amplitude of luteinizing hormone (LH) pulses in intact male mice deficient in substance P, neurokinin A (NKA) signaling (Tac1KO), and NKB signaling (Tac2KO and Tacr3KO).
View Article and Find Full Text PDF