Background: In patients with locally advanced breast cancer (LABC) receiving neoadjuvant chemotherapy (NAC), quantitative ultrasound (QUS) radiomics can predict final responses early within 4 of 16-18 weeks of treatment. The current study was planned to study the feasibility of a QUS-radiomics model-guided adaptive chemotherapy.
Methods: The phase 2 open-label randomized controlled trial included patients with LABC planned for NAC.
Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks.
View Article and Find Full Text PDFThe purpose of this study was to investigate the performances of the tumor response prediction prior to neoadjuvant chemotherapy based on quantitative ultrasound, tumour core-margin, texture derivative analyses, and molecular parameters in a large cohort of patients (n = 208) with locally advanced and earlier-stage breast cancer and combined them to best determine tumour responses with machine learning approach. Two multi-features response prediction algorithms using a k-nearest neighbour and support vector machine were developed with leave-one-out and hold-out cross-validation methods to evaluate the performance of the response prediction models. In a leave-one-out approach, the quantitative ultrasound-texture analysis based model attained good classification performance with 80% of accuracy and AUC of 0.
View Article and Find Full Text PDFAim: Cancer treatments with radiation present a challenging physical toll for patients, which can be justified by the potential reduction in cancerous tissue with treatment. However, there remain patients for whom treatments do not yield desired outcomes. Radiomics involves using biomedical images to determine imaging features which, when used in tandem with retrospective treatment outcomes, can train machine learning (ML) classifiers to create predictive models.
View Article and Find Full Text PDFBackground: This study was conducted to explore the use of quantitative ultrasound (QUS) in predicting recurrence for patients with locally advanced breast cancer (LABC) early during neoadjuvant chemotherapy (NAC).
Methods: Eighty-three patients with LABC were scanned with 7 MHz ultrasound before starting NAC (week 0) and during treatment (week 4). Spectral parametric maps were generated corresponding to tumor volume.
Background: The purpose of the study was to investigate the role of pre-treatment quantitative ultrasound (QUS)-radiomics in predicting recurrence for patients with locally advanced breast cancer (LABC).
Materials And Methods: A prospective study was conducted in patients with LABC ( = 83). Primary tumours were scanned using a clinical ultrasound device before starting treatment.
Background: Radiomics involving quantitative analysis of imaging has shown promises in oncology to serve as non-invasive biomarkers. We investigated whether pre-treatment T2-weighted magnetic resonance imaging (MRI) can be used to predict response to neoadjuvant chemotherapy (NAC) in breast cancer.
Materials And Methods: MRI scans were obtained for 102 patients with locally advanced breast cancer (LABC).
Purpose: This study investigated the use of quantitative ultrasound (QUS) obtained during radical radiotherapy (RT) as a radiomics biomarker for predicting recurrence in patients with node-positive head-neck squamous cell carcinoma (HNSCC).
Methods: Fifty-one patients with HNSCC were treated with RT (70 Gy/33 fractions) (±concurrent chemotherapy) were included. QUS Data acquisition involved scanning an index neck node with a clinical ultrasound device.
To investigate the role of quantitative ultrasound (QUS) radiomics to predict treatment response in patients with head and neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). Five spectral parameters, 20 texture, and 80 texture-derivative features were extracted from the index lymph node before treatment. Response was assessed initially at 3 months with complete responders labelled as early responders (ER).
View Article and Find Full Text PDFPurpose: We develop a multi-centric response predictive model using QUS spectral parametric imaging and novel texture-derivate methods for determining tumour responses to neoadjuvant chemotherapy (NAC) prior to therapy initiation.
Materials And Methods: QUS Spectroscopy provided parametric images of mid-band-fit (MBF), spectral-slope (SS), spectral-intercept (SI), average-scatterer-diameter (ASD), and average-acoustic-concentration (AAC) in 78 patients with locally advanced breast cancer (LABC) undergoing NAC. Ultrasound radiofrequency data were collected from Sunnybrook Health Sciences Center (SHSC), University of Texas MD Anderson Cancer Center (MD-ACC), and St.
This prospective study was conducted to investigate the role of quantitative ultrasound (QUS) radiomics in predicting recurrence for patients with node-positive head-neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). The most prominent cervical lymph node (LN) was scanned with a clinical ultrasound device having central frequency of 6.5 MHz.
View Article and Find Full Text PDFAim: We investigated quantitative ultrasound (QUS) in patients with node-positive head and neck malignancies for monitoring responses to radical radiotherapy (RT).
Materials & Methods: QUS spectral and texture parameters were acquired from metastatic lymph nodes 24 h, 1 and 4 weeks after starting RT. K-nearest neighbor and naive-Bayes machine-learning classifiers were used to build prediction models for each time point.
Background: To investigate quantitative ultrasound (QUS) based higher-order texture derivatives in predicting the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC).
Materials And Methods: 100 Patients with LABC were scanned before starting NAC. Five QUS parametric image-types were generated from radio-frequency data over the tumor volume.
Background: Neoadjuvant chemotherapy (NAC) is the standard of care for patients with locally advanced breast cancer (LABC). The study was conducted to investigate the utility of quantitative ultrasound (QUS) carried out during NAC to predict the final tumour response in a multi-institutional setting.
Methods: Fifty-nine patients with LABC were enrolled from three institutions in North America (Sunnybrook Health Sciences Centre (Toronto, Canada), MD Anderson Cancer Centre (Texas, USA), and Princess Margaret Cancer Centre (Toronto, Canada)).
Purpose: Accurate and timely diagnosis of breast cancer is extremely important because of its high incidence and high morbidity. Early diagnosis of breast cancer through screening can improve overall prognosis. Currently, biopsy remains as the gold standard for tumor pathological confirmation.
View Article and Find Full Text PDFBackground: This study was conducted in order to develop a model for predicting response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC) using pretreatment quantitative ultrasound (QUS) radiomics.
Methods: This was a multicenter study involving four sites across North America, and appropriate approval was obtained from the individual ethics committees. Eighty-two patients with LABC were included for final analysis.
Second harmonic generation (SHG) polarization microscopy was used to investigate the organization of myosin nanomotors in myofilaments of muscle cells. The distribution of the second-order nonlinear susceptibility component ratio χzzz(2)/χzxx(2) along anisotropic bands of sarcomeres revealed differences between the headless and head-containing regions of myofilaments. The polarization-in polarization-out SHG measurements of headless myosin mutants of indirect flight muscle in Drosophila melanogaster confirmed a lower susceptibility component ratio compared to the head-containing myocytes with wild-type myosins.
View Article and Find Full Text PDF