Cellular signaling is in part regulated by the composition and subcellular localization of a series of protein interactions that collectively form a signaling complex. Using the α7 nicotinic acetylcholine receptor (α7nAChR) as a proof-of-concept target, we developed a platform to identify functional modulators (or auxiliary proteins) of α7nAChR signaling. The Broad cDNA library was transiently cotransfected with α7nAChR cDNA in HEK293T cells in a high-throughput fashion.
View Article and Find Full Text PDFHere, we report a high-throughput virtual screening (HTVS) study using phosphoinositide 3-kinase (both PI3Kγ and PI3Kδ). Our initial HTVS results of the Janssen corporate database identified small focused libraries with hit rates at 50% inhibition showing a 50-fold increase over those from a HTS (high-throughput screen). Further, applying constraints based on "chemically intuitive" hydrogen bonds and/or positional requirements resulted in a substantial improvement in the hit rates (versus no constraints) and reduced docking time.
View Article and Find Full Text PDFAn EPIC label-free phenotypic platform was developed to explore B cell receptor (BCR) and CD40R-mediated B cell activation. The phenotypic assay measured the association of RL non-Hodgkin's lymphoma B cells expressing lymphocyte function-associated antigen 1 (LFA-1) to intercellular adhesion molecule 1 (ICAM-1)-coated EPIC plates. Anti-IgM (immunoglobulin M) mediated BCR activation elicited a response that was blocked by LFA-1/ICAM-1 specific inhibitors and a panel of Bruton's tyrosine kinase (BTK) inhibitors.
View Article and Find Full Text PDFMonoamine transporters regulate the concentration of neurotransmitters in the synapse following neurotransmission and are very important drug targets in the pharmaceutical industry. Because of the labor-intensive nature of functional uptake assays using radioactive substrates, high-throughput screening for monoamine transporter inhibitors has been limited to radioligand binding assays. In this article, the authors describe the development of a 384-well, high-throughput functional screening assay for norepinephrine transporter inhibitors using the FLIPR(Tetra) and a recently identified fluorescent substrate, 4-(4-dimethylaminostyryl)- N-methyl-pyridinium (ASP(+)).
View Article and Find Full Text PDF