Objective: Dysregulated APRIL/BAFF signaling is implicated in the pathogenesis of multiple autoimmune diseases, including systemic lupus erythematosus and lupus nephritis. We undertook this study to develop and evaluate a high-affinity APRIL/BAFF antagonist to overcome the clinical limitations of existing B cell inhibitors.
Methods: A variant of TACI-Fc generated by directed evolution showed enhanced binding for both APRIL and BAFF and was designated povetacicept (ALPN-303).
Previous studies tracking AMPA receptor (AMPAR) diffusion at synapses observed a large mobile extrasynaptic AMPAR pool. Using super-resolution microscopy, we examined how fluorophore size and photostability affected AMPAR trafficking outside of, and within, post-synaptic densities (PSDs) from rats. Organic fluorescent dyes (≈4 nm), quantum dots, either small (≈10 nm diameter; sQDs) or big (>20 nm; bQDs), were coupled to AMPARs via different-sized linkers.
View Article and Find Full Text PDFAppl Biochem Biotechnol
November 2015
Inteins are protein segments embedded in frame within a precursor sequence that catalyze a self-excision reaction and ligate the flanking sequences with a standard peptide bond. Split inteins are expressed as two separate polypeptide fragments and trans-splice upon subunit association. Split inteins have found use in biotechnology applications but their use in postsynthetic domain assembly in vivo has been limited to the ligation of two protein domains.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2015
We recently reported the engineering of monomeric streptavidin (mSA) for use in monomeric detection of biotinylated ligands. Although mSA can be expressed functionally on the surface of mammalian cells and yeast, the molecule does not fold correctly when expressed in Escherichia coli. Refolding from inclusion bodies is cumbersome and yields a limited amount of purified protein.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2013
Streptavidin and its homologs (together referred to as streptavidin) are widely used in molecular science owing to their highly selective and stable interaction with biotin. Other factors also contribute to the popularity of the streptavidin-biotin system, including the stability of the protein and various chemical and enzymatic biotinylation methods available for use with different experimental designs. The technology has enjoyed a renaissance of a sort in recent years, as new streptavidin variants are engineered to complement native proteins and novel methods of introducing selective biotinylation are developed for in vitro and in vivo applications.
View Article and Find Full Text PDFWe recently reported the engineering of monomeric streptavidin, mSA, corresponding to one subunit of wild type (wt) streptavidin tetramer. The monomer was designed by homology modeling, in which the streptavidin and rhizavidin sequences were combined to engineer a high affinity binding pocket containing residues from a single subunit only. Although mSA is stable and binds biotin with nanomolar affinity, its fast off rate (koff ) creates practical challenges during applications.
View Article and Find Full Text PDF