Publications by authors named "Daniel D Bravo"

Background And Purpose: Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (k, k and K) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters.

View Article and Find Full Text PDF

Efferocytosis is a phagocytic process by which apoptotic cells are cleared by professional and nonprofessional phagocytic cells. In tumors, efferocytosis of apoptotic cancer cells by tumor-associated macrophages prevents Ag presentation and suppresses the host immune response against the tumor. Therefore, reactivating the immune response by blockade of tumor-associated macrophage-mediated efferocytosis is an attractive strategy for cancer immunotherapy.

View Article and Find Full Text PDF

Here, we explore whether PEGylation of antibodies can modulate their biodistribution to the eye, an organ once thought to be immune privileged but has recently been shown to be accessible to IV-administered large molecules, such as antibodies. We chose to PEGylate an anti-MerTK antibody, a target with known potential for ocular toxicity, to minimize biodistribution to retinal pigment epithelial cells (RPEs) in the eye by increasing the hydrodynamic volume of the antibody. We used site-specific conjugation to an engineered cysteine on anti-MerTK antibody to chemically attach 40-kDa branched or linear PEG polymers.

View Article and Find Full Text PDF

Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described.

View Article and Find Full Text PDF

Clearance of apoptotic cells by macrophages prevents excessive inflammation and supports immune tolerance. Here, we examined the effect of blocking apoptotic cell clearance on anti-tumor immune response. We generated an antibody that selectively inhibited efferocytosis by phagocytic receptor MerTK.

View Article and Find Full Text PDF

IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA.

View Article and Find Full Text PDF

Introduction: Many cell types (including muscle cells and fibroblasts) can contract at physiological conditions and their contractility may change during tissue injury and repair or other diseases such as allergy and asthma. The conventional gel contraction assay is commonly used to monitor the cellular contractility. It is a manual assay and the experiment usually takes hours even days to complete.

View Article and Find Full Text PDF

The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus.

View Article and Find Full Text PDF