Publications by authors named "Daniel Czyzyk"

The gastrointestinal disease cryptosporidiosis, caused by the genus , is a common cause of diarrheal diseases in children, particularly in developing countries and frequently fatal in immunocompromised individuals. ()-specific bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) has been a molecular target for inhibitor design. (.

View Article and Find Full Text PDF

Effective therapies are lacking to treat gastrointestinal infections caused by the genus Cryptosporidium, which can be fatal in the immunocompromised. One target of interest is Cryptosporidium hominis (C. hominis) thymidylate synthase-dihydrofolate reductase (ChTS-DHFR), a bifunctional enzyme necessary for DNA biosynthesis.

View Article and Find Full Text PDF

Thymidylate synthase (TS), found in all organisms, is an essential enzyme responsible for the de novo synthesis of deoxythymidine monophosphate. The TS active sites of the protozoal parasite Cryptosporidium hominis and human are relatively conserved. Evaluation of antifolate compound 1 and its R-enantiomer 2 against both enzymes reveals divergent inhibitor selectivity and enzyme stereospecificity.

View Article and Find Full Text PDF

Protozoans of the genus Cryptosporidium are the causative agent of the gastrointestinal disease, cryptosporidiosis, which can be fatal in immunocompromised individuals. Cryptosporidium hominis (C. hominis) bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in the folate biosynthesis pathway and a molecular target for inhibitor design.

View Article and Find Full Text PDF

Gram-negative bacteria comprise the majority of microbes that cause infections that are resistant to pre-existing antibiotics. The complex cell wall architecture contributes to their ability to form biofilms, which are often implicated in hospital-acquired infections. Biofilms promote antibiotic resistance by enabling the bacteria to survive hostile environments such as UV radiation, pH shifts, and antibiotics.

View Article and Find Full Text PDF

Heptosyltransferase I (HepI) catalyzes the addition of l-glycero-β-d-manno-heptose to Kdo-Lipid A, as part of the biosynthesis of the core region of lipopolysaccharide (LPS). Gram-negative bacteria with gene knockouts of HepI have reduced virulence and enhanced susceptibility to hydrophobic antibiotics, making the design of inhibitors of HepI of interest. Because HepI protein dynamics are partially rate-limiting, disruption of protein dynamics might provide a new strategy for inhibiting HepI.

View Article and Find Full Text PDF

Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design.

View Article and Find Full Text PDF

Heptosyltransferase I (HepI), the enzyme responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-d-manno-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide, is a member of the GT-B structural class of enzymes. Crystal structures have revealed open and closed conformations of apo and ligand-bound GT-B enzymes, implying that large-scale protein conformational dynamics play a role in their reaction mechanism. Here we report transient kinetic analysis of conformational changes in HepI reported by intrinsic tryptophan fluorescence and present the first real-time evidence of a GT-B enzyme undergoing a substrate binding-induced transition from an open to closed state prior to catalysis.

View Article and Find Full Text PDF

Heptosyltransferase I (HepI) is responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-D-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide (LPS). The catalytic efficiency of HepI with the fully deacylated analogue of Escherichia coli HepI LipidA is 12-fold greater than with the fully acylated substrate, with a k(cat)/K(m) of 2.7 × 10(6) M(-1) s(-1), compared to a value of 2.

View Article and Find Full Text PDF

Objective: Impaired glucose counterregulation during hypoglycemia is well documented in patients with type 1 diabetes; however, the molecular mechanisms underlying this defect remain uncertain. We reported that the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in a crucial glucose-sensing region within the brain, the ventromedial hypothalamus (VMH), plays an important role in modulating the magnitude of the glucagon and epinephrine responses to hypoglycemia and investigated whether VMH GABAergic tone is altered in diabetes and therefore might contribute to defective counterregulatory responses.

Research Design And Methods: We used immunoblots to measure GAD(65) protein (a rate-limiting enzyme in GABA synthesis) and microdialysis to measure extracellular GABA levels in the VMH of two diabetic rat models, the diabetic BB rat and the streptozotocin (STZ)-induced diabetic rat, and compared them with nondiabetic controls.

View Article and Find Full Text PDF

Local delivery of glucose into a critical glucose-sensing region within the brain, the ventromedial hypothalamus (VMH), can suppress glucose counterregulatory responses to systemic hypoglycemia. Here, we investigated whether this suppression was accomplished through changes in GABA output in the VMH. Sprague-Dawley rats had catheters and guide cannulas implanted.

View Article and Find Full Text PDF

Objective: We have previously demonstrated that modulation of gamma-aminobutyric acid (GABA) inhibitory tone in the ventromedial hypothalamus (VMH), an important glucose-sensing region in the brain, modulates the magnitude of glucagon and sympathoadrenal responses to hypoglycemia. In the current study, we examined whether increased VMH GABAergic tone may contribute to suppression of counterregulatory responses after recurrent hypoglycemia.

Research Design And Methods: To test this hypothesis, we quantified expression of the GABA synthetic enzyme, glutamic acid decarboxylase (GAD), in the VMH of control and recurrently hypoglycemic rats.

View Article and Find Full Text PDF