There are currently no effective biomarkers for diagnosing Parkinson's disease (PD) or tracking its progression. Here, we developed an artificial intelligence (AI) model to detect PD and track its progression from nocturnal breathing signals. The model was evaluated on a large dataset comprising 7,671 individuals, using data from several hospitals in the United States, as well as multiple public datasets.
View Article and Find Full Text PDFEarly implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources.
View Article and Find Full Text PDFEpilepsy is one of the most common neurological disorders, and it affects almost 1% of the population worldwide. Many people living with epilepsy continue to have seizures despite anti-epileptic medication therapy, surgical treatments, and neuromodulation therapy. The unpredictability of seizures is one of the most disabling aspects of epilepsy.
View Article and Find Full Text PDFIntracranial electroencephalographic (iEEG) recordings from patients with epilepsy provide distinct opportunities and novel data for the study of co-occurring psychiatric disorders. Comorbid psychiatric disorders are very common in drug-resistant epilepsy and their added complexity warrants careful consideration. In this review, we first discuss psychiatric comorbidities and symptoms in patients with epilepsy.
View Article and Find Full Text PDFRationale: Barriers to developing treatments for human status epilepticus include the inadequacy of experimental animal models. In contrast, naturally occurring canine epilepsy is similar to the human condition and can serve as a platform to translate research from rodents to humans. The objectives of this study were to characterize the pharmacokinetics of an intravenous (IV) dose of topiramate (TPM) in dogs with epilepsy and evaluate its effect on intracranial electroencephalographic (iEEG) features.
View Article and Find Full Text PDFManagement of drug resistant focal epilepsy would be greatly assisted by a reliable warning system capable of alerting patients prior to seizures to allow the patient to adjust activities or medication. Such a system requires successful identification of a preictal, or seizure-prone state. Identification of preictal states in continuous long- duration intracranial electroencephalographic (iEEG) recordings of dogs with naturally occurring epilepsy was investigated using a support vector machine (SVM) algorithm.
View Article and Find Full Text PDFSeizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG).
View Article and Find Full Text PDF