Future technologies to harness solar energy and to convert this into chemical energy strongly rely on straightforward approaches to prepare versatile soft matter scaffolds for the immobilization of catalysts and sensitizers in a defined environment. In addition, particularly for light-driven hydrogen evolution, a transition to noble metal-free photosensitizers and catalysts is urgently required. Herein, we report a fully organic light-harvesting soft matter network based on a polyampholyte hydrogel where both photosensitizer (a perylene monoimide derivative) and a H evolution catalyst ([MoS]) are electrostatically incorporated.
View Article and Find Full Text PDFThis study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative - poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO MA)) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO MA) is varied from 3 to 40 kg mol while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes.
View Article and Find Full Text PDFIn this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation.
View Article and Find Full Text PDF