Publications by authors named "Daniel Cordero"

Article Synopsis
  • - The study evaluated the effectiveness of dynamic body-feed filtration (DBF) in removing bulky solids from equine hyperimmune plasma during snake antivenom production using caprylic acid, comparing various diatomites for optimal filtration performance.
  • - C1000 diatomite yielded the best results at 90 g/L concentration, demonstrating a recovery of immunoglobulins of 108 ± 4% in a scale-up to 50 L batches, while meeting quality specifications for the antivenoms.
  • - Unlike traditional open filtration systems, DBF offers enhanced microbiological safety due to its closed system design and faster filtration process, making it a cost-effective and compliant alternative for primary clarification in antivenom manufacturing.
View Article and Find Full Text PDF

Enhancement of antivenom immune responses in horses through adjuvant technology improves antivenom production efficiency, but substantial local reactogenicity associated with some traditional veterinary adjuvants limits their usability. To explore modern adjuvant systems suitable for generating antivenom responses in horses, we first assessed their physicochemical compatibility with Bothrops asper snake venom. Liposome and nanoparticle aluminum adjuvants exhibited changes in particle size and phospholipid content after mixing with venom, whereas squalene emulsion-based adjuvants remained stable.

View Article and Find Full Text PDF

Adjuvant emulsions are widely used to enhance the antibody response in animals used as immunoglobulin source to produce snake antivenoms. We tested the performance of four commercial emulsion adjuvants (Montanide, Freund, Carbigen, and Emulsigen-D) and an experimental adjuvant (QH-769) in the antibody response of horses towards venoms of the African snakes , , and . Montanide, Freund and Carbigen adjuvants generated the highest immune response but induced moderate/severe local lesions at the site of injection.

View Article and Find Full Text PDF

Background: Snakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp.

View Article and Find Full Text PDF
Article Synopsis
  • Vaccines are vital in fighting COVID-19 but may not work well for people with weakened immune systems, highlighting the need for alternative treatments like anti-SARS-CoV-2 immunoglobulins.
  • A study compared two types of intravenous immunoglobulins: one made from vaccinated donors (VP-IVIg) and one from recovered COVID-19 patients (CP-IVIg), finding that VP-IVIg had higher concentrations of neutralizing antibodies.
  • The research suggests that VP-IVIg is safe and effective, and using caprylic acid precipitation is a practical method to produce these treatments, especially beneficial for lower-income countries facing the pandemic.
View Article and Find Full Text PDF

The lethality neutralization assay in mice is the gold standard for the evaluation of the preclinical efficacy and specification fulfillment of snake antivenoms. However, owing to the animal suffering involved, this assay is a candidate to be replaced by alternatives or, at least, improved by the reduction of the number of animals used per experiment, the introduction of analgesia, and the refinement of the test. Since these tests are usually run for 24 or 48 h, one possibility to refine it is to shorten the endpoint observation time of the assay and so limiting the duration of suffering.

View Article and Find Full Text PDF

In the current global emergency due to SARS-CoV-2 outbreak, passive immunotherapy emerges as a promising treatment for COVID-19. Among animal-derived products, equine formulations are still the cornerstone therapy for treating envenomations due to animal bites and stings. Therefore, drawing upon decades of experience in manufacturing snake antivenom, we developed and preclinically evaluated two anti-SARS-CoV-2 polyclonal equine formulations as potential alternative therapy for COVID-19.

View Article and Find Full Text PDF