Publications by authors named "Daniel Colquitt"

The concept of metamaterial recently emerged as a new frontier of scientific research, encompassing physics, materials science and engineering. In a broad sense, a metamaterial indicates an engineered material with exotic properties not found in nature, obtained by appropriate architecture either at macro-scale or at micro-/nano-scales. The architecture of metamaterials can be tailored to open unforeseen opportunities for mechanical and acoustic applications, as demonstrated by an impressive and increasing number of studies.

View Article and Find Full Text PDF

The concept of metamaterial recently emerged as a new frontier of scientific research, encompassing physics, materials science and engineering. In a broad sense, a metamaterial indicates an engineered material with exotic properties not found in nature, obtained by appropriate architecture either at macro-scale or at micro-/nano-scales. The architecture of metamaterials can be tailored to open unforeseen opportunities for mechanical and acoustic applications, as demonstrated by an impressive and increasing number of studies.

View Article and Find Full Text PDF

We study numerically the potential of a multimodal elastic metamaterial to filter and guide Lamb waves in a plate. Using a sub-wavelength array of elongated beams attached to the plate, and combining the coupling effects of the longitudinal and flexural motion of these resonators, we create narrow transmission bands at the flexural resonances of the beams inside the wide frequency bandgap induced by their longitudinal resonance. The diameter of the beams becomes the tuning parameter for selection of the flexural leakage frequency, without affecting the main bandgap.

View Article and Find Full Text PDF

In this work we employ additive manufacturing to print a circular array of micropillars on an aluminium slab turning its top surface into a graded index metasurface for surface acoustic waves (SAW). The graded metasurface reproduces a Luneburg lens capable of focusing plane SAWs to a point. The graded index profile is obtained by exploiting the dispersion properties of the metasurface arising from the well-known resonant coupling between the micropillars (0.

View Article and Find Full Text PDF

Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within metasurfaces is the tailored rainbow trapping and selective spatial frequency separation of electromagnetic and acoustic waves using graded metasurfaces. This frequency dependent trapping and spatial frequency segregation has implications for energy concentrators and associated energy harvesting, sensing and wave filtering techniques.

View Article and Find Full Text PDF

Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a "seismic rainbow" effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations.

View Article and Find Full Text PDF