The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique.
View Article and Find Full Text PDFBackground: Reorientating pelvic osteotomies are performed to prevent femoral-acetabular impingement or degenerative arthritis. A Toennis-Kalchschmidt triple pelvis innominate osteotomy is used in symptomatic patients. This study aimed to investigate the biomechanical behaviour of two different acetabular screw configurations for triple pelvis innominate osteotomy osteosynthesis.
View Article and Find Full Text PDF: The aim of this study was to investigate under dynamic loading the potential biomechanical benefit of simulated first tarsometatarsal (TMT-1) fusion with low-profile superelastic nitinol staples used as continuous compression implants (CCIs) in two different configurations in comparison to crossed screws and locked plating in a human anatomical model. : Thirty-two paired human anatomical lower legs were randomized to four groups for TMT-1 treatment via: (1) crossed-screws fixation with two 4.0 mm fully threaded lag screws; (2) plate-and-screw fixation with a 4.
View Article and Find Full Text PDFComplex intraarticular distal radius fractures (DRFs), commonly managed with volar locking plates, are challenging. Combined volar and dorsal plating is frequently applied for treatment, however, biomechanical investigations are scant. The aim of this biomechanical study was to investigate volar plating versus double plating in DRFs with different degrees of lunate facet comminution.
View Article and Find Full Text PDFThe orthopedic device industry relies heavily on clinical evaluation to confirm the safety, performance, and clinical benefits of its implants. Limited sample size often prevents these studies from capturing the full spectrum of patient variability and real-life implant use. The device industry is accustomed to simulating benchtop tests with numerical methods and recent developments now enable virtual "in silico clinical trials" (ISCT).
View Article and Find Full Text PDFLocked plating of proximal humerus fractures (PHF) is associated with high failure rates (15-37%). Secondary screw perforation is a prominent mode of failure for PHF and typically requires reoperation. The anatomical fracture reduction is an essential factor to prevent fixation failure.
View Article and Find Full Text PDFSecondary perforation of screws into the joint surface is a commonly reported mechanical fixation failure mode in locked plating of proximal humerus fractures (PHF). This study investigated the influence that screws tip to joint distance (TJD) has on the biomechanical risk of secondary screw perforation and the stability of PHF. Ten pairs of cadaveric proximal humeri with a wide range of bone mineral density were used.
View Article and Find Full Text PDFObjectives: To investigate the biomechanical competence of locked plating augmented with supplemental intramedullary graft in comparison to conventional locked plate fixation in proximal humerus fractures (PHF).
Methods: Complex four-part PHFs were set in 30 artificial humeri assigned to 3 study groups (n = 10 in each group). Group 1 was characterized by loss of medial support, group 2 by simulated severe cancellous bone damage due to osteoporosis, and group 3 by combination of the 2 features.