Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves.
View Article and Find Full Text PDFRobust transport of therapeutic peptides and other medicinal molecules across tight epithelial barriers would overcome the major obstacle to oral delivery. We have already demonstrated that peptides conjugated to gangliosides (GM1 and GM3) having non-native short N-acyl groups hijack the endogenous process of intracellular lipid sorting resulting in transcytosis and delivery across epithelial barriers in vitro and in vivo. Here, we report synthetic methodologies to covalently conjugate peptides directly to short-acyl-chain C-ceramides.
View Article and Find Full Text PDFAbsorption and secretion of peptide and protein cargoes across single-cell thick mucosal and endothelial barriers occurs by active endocytic and vesicular trafficking that connects one side of the epithelial or endothelial cell (the lumen) with the other (the serosa or blood). Assays that assess this pathway must robustly control for non-specific and passive solute flux through weak or damaged intercellular junctions that seal the epithelial or endothelial cells together. Here we describe an cell culture Transwell assay for transcytosis of therapeutic peptides linked covalently to various species of the glycosphingolipid GM1.
View Article and Find Full Text PDFTransport of biologically active molecules across tight epithelial barriers is a major challenge preventing therapeutic peptides from oral drug delivery. Here, we identify a set of synthetic glycosphingolipids that harness the endogenous process of intracellular lipid-sorting to enable mucosal absorption of the incretin hormone GLP-1. Peptide cargoes covalently fused to glycosphingolipids with ceramide domains containing C6:0 or smaller fatty acids were transported with 20-100-fold greater efficiency across epithelial barriers in vitro and in vivo.
View Article and Find Full Text PDFMucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered.
View Article and Find Full Text PDFPolarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids.
View Article and Find Full Text PDFCurrent models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells.
View Article and Find Full Text PDFHow the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process.
View Article and Find Full Text PDFThe incretin hormone Glucagon-like peptide 1 (GLP-1) requires delivery by injection for the treatment of Type 2 diabetes mellitus. Here, we test if the properties of glycosphingolipid trafficking in epithelial cells can be applied to convert GLP-1 into a molecule suitable for mucosal absorption. GLP-1 was coupled to the extracellular oligosaccharide domain of GM1 species containing ceramides with different fatty acids and with minimal loss of incretin bioactivity.
View Article and Find Full Text PDFCholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN.
View Article and Find Full Text PDFThe glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells. Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2013
Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at the plasma membrane where it is transported retrograde through the trans-Golgi network (TGN) into the endoplasmic reticulum (ER).
View Article and Find Full Text PDFBackground: The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function.
Methodology/principal Findings: Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G(7)]tGIP showing enhanced efficacy compared to the wild type construct.
Proc Natl Acad Sci U S A
September 2011
Phosphatidylserine (PS) is a relatively minor constituent of biological membranes. Despite its low abundance, PS in the plasma membrane (PM) plays key roles in various phenomena such as the coagulation cascade, clearance of apoptotic cells, and recruitment of signaling molecules. PS also localizes in endocytic organelles, but how this relates to its cellular functions remains unknown.
View Article and Find Full Text PDFCell surface heptahelical G protein-coupled receptors (GPCRs) mediate critical cellular signaling pathways and are important pharmaceutical drug targets. (1) In addition to traditional small-molecule approaches, lipopeptide-based GPCR-derived pepducins have emerged as a new class of pharmaceutical agents. (2, 3) To better understand how pepducins interact with targeted receptors, we developed a cell-based photo-cross-linking approach to study the interaction between the pepducin agonist ATI-2341 and its target receptor, chemokine C-X-C-type receptor 4 (CXCR4).
View Article and Find Full Text PDFCholera toxin (CT) causes the massive secretory diarrhea associated with epidemic cholera. To induce disease, CT enters the cytosol of host cells by co-opting a lipid-based sorting pathway from the plasma membrane, through the trans-Golgi network (TGN), and into the endoplasmic reticulum (ER). In the ER, a portion of the toxin is unfolded and retro- translocated to the cytosol.
View Article and Find Full Text PDFCholera toxin (CT), an AB(5)-subunit toxin, enters host cells by binding the ganglioside GM1 at the plasma membrane (PM) and travels retrograde through the trans-Golgi Network into the endoplasmic reticulum (ER). In the ER, a portion of CT, the enzymatic A1-chain, is unfolded by protein disulfide isomerase and retro-translocated to the cytosol by hijacking components of the ER associated degradation pathway for misfolded proteins. After crossing the ER membrane, the A1-chain refolds in the cytosol and escapes rapid degradation by the proteasome to induce disease by ADP-ribosylating the large G-protein Gs and activating adenylyl cyclase.
View Article and Find Full Text PDFAn in vitro selection search for DNAs capable of catalyzing photochemistry yielded two distinctive deoxyribozymes (DNAzymes) with photolyase activity: UV1C, which repaired thymine dimers within DNA using a UV light of >300 nm wavelength and no extraneous cofactor, and Sero1C, which required the tryptophan metabolite serotonin as cofactor in addition to the UV light. Catalysis by Sero1C conformed to Michaelis-Menten kinetics, and analysis of the action spectrum of Sero1C confirmed that serotonin did indeed serve as a catalytic cofactor rather than as a structural cofactor. Sero1C and UV1C showed strikingly distinct wavelength optima for their respective photoreactivation catalyses.
View Article and Find Full Text PDFCholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER).
View Article and Find Full Text PDFAmong the unexpected chemistries that can be catalyzed by nucleic acid enzymes is photochemistry. We have reported the in vitro selection of a small, cofactor-independent deoxyribozyme, UV1C, capable of repairing thymine dimers in a DNA substrate, most optimally with light at a wavelength of >300 nm. We hypothesized that a guanine quadruplex functioned both as a light antenna and an electron source for the repair of the substrate within the enzyme-substrate complex.
View Article and Find Full Text PDFStreptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10(4)-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2004
In vitro selection was used to investigate whether nucleic acid enzymes are capable of catalyzing photochemical reactions. The reaction chosen was photoreactivation of thymine cyclobutane dimers in DNA by using serotonin as cofactor and light of wavelengths longer than the absorption spectrum of DNA. Curiously, the dominant single-stranded DNA sequence selected, UV1A, was found to repair its internal thymine dimer substrate efficiently even in the absence of serotonin or any other cofactor.
View Article and Find Full Text PDFNucleic Acids Res Suppl
October 2003
Experimental strategies involving in vitro selection, designed to test the validity of the "RNA World Hypothesis", have demonstrated a significantly broader catalytic range for RNA (and, nucleic acids in general) than found in naturally occurring ribozymes. We wished to explore whether photochemical reactions could be catalyzed by nucleic acid enzymes. In vitro selection experiments were carried out to obtain "photolyase" deoxyribozymes, capable of photoreversing thymine cyclobutane dimers in the presence of a cofactor, serotonin.
View Article and Find Full Text PDFDNA aptamers were selected for their ability to bind simultaneously to the protein cytochrome c and to the metalloporphyrin hemin. Such aptamers each contained a conserved guanine-rich core, analogous to sequences shown previously to form a hemin-binding site when folded. The detailed study of CH6A, a deletion mutant of one clone, indicated that in the presence of hemin the guanine-rich core of the aptamer folded to form a guanine quadruplex.
View Article and Find Full Text PDF