The causal structure of a system imposes constraints on the joint probability distribution of variables that can be generated by the system. Archetypal constraints consist of conditional independencies between variables. However, particularly in the presence of hidden variables, many causal structures are compatible with the same set of independencies inferred from the marginal distributions of observed variables.
View Article and Find Full Text PDFQuantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions.
View Article and Find Full Text PDFUnderstanding perceptual decision-making requires linking sensory neural responses to behavioral choices. In two-choice tasks, activity-choice covariations are commonly quantified with a single measure of choice probability (CP), without characterizing their changes across stimulus levels. We provide theoretical conditions for stimulus dependencies of activity-choice covariations.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe cortex organizes sensory information to enable discrimination and generalization. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity.
View Article and Find Full Text PDFPerceptual learning, the improvement in perceptual abilities with training, is thought to be mediated by an alteration of neuronal tuning. It remains poorly understood how tuning properties change as training progresses, whether improved stimulus tuning directly links to increased behavioural readout of sensory information, or how population coding mechanisms change with training. Here, we recorded continuously from multiple neuronal clusters in area V4 while macaque monkeys learned a fine contrast categorization task.
View Article and Find Full Text PDFUnderstanding how different information sources together transmit information is crucial in many domains. For example, understanding the neural code requires characterizing how different neurons contribute unique, redundant, or synergistic pieces of information about sensory or behavioral variables. Williams and Beer (2010) proposed a partial information decomposition (PID) that separates the mutual information that a set of sources contains about a set of targets into nonnegative terms interpretable as these pieces.
View Article and Find Full Text PDFUnlabelled: Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly.
View Article and Find Full Text PDFUnlabelled: Adaptive behaviors are built on the arbitrary linkage of sensory inputs to actions and goals. Although the sensorimotor and associative frontostriatal circuits are known to mediate arbitrary visuomotor mappings, the underlying corticocortico dynamics remain elusive. Here, we take a novel approach exploiting gamma-band neural activity to study the human cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping.
View Article and Find Full Text PDFIn recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl's causality, algorithms of inductive causation (IC and IC(*)) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions.
View Article and Find Full Text PDFThe role of correlations between neuronal responses is crucial to understanding the neural code. A framework used to study this role comprises a breakdown of the mutual information between stimuli and responses into terms that aim to account for different coding modalities and the distinction between different notions of independence. Here we complete the list of types of independence and distinguish activity independence (related to total correlations), conditional independence (related to noise correlations), signal independence (related to signal correlations), coding independence (related to information transmission), and information independence (related to redundancy).
View Article and Find Full Text PDFRecently, the SPIKE-distance has been proposed as a parameter-free and timescale-independent measure of spike train synchrony. This measure is time resolved since it relies on instantaneous estimates of spike train dissimilarity. However, its original definition led to spuriously high instantaneous values for eventlike firing patterns.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2012
The analysis of dynamic dependencies in complex systems such as the brain helps to understand how emerging properties arise from interactions. Here we propose an information-theoretic framework to analyze the dynamic dependencies in multivariate time-evolving systems. This framework constitutes a fully multivariate extension and unification of previous approaches based on bivariate or conditional mutual information and Granger causality or transfer entropy.
View Article and Find Full Text PDFBiological systems often consist of multiple interacting subsystems, the brain being a prominent example. To understand the functions of such systems it is important to analyze if and how the subsystems interact and to describe the effect of these interactions. In this work we investigate the extent to which the cause-and-effect framework is applicable to such interacting subsystems.
View Article and Find Full Text PDFTime scale parametric spike train distances like the Victor and the van Rossum distances are often applied to study the neural code based on neural stimuli discrimination. Different neural coding hypotheses, such as rate or coincidence coding, can be assessed by combining a time scale parametric spike train distance with a classifier in order to obtain the optimal discrimination performance. The time scale for which the responses to different stimuli are distinguished best is assumed to be the discriminative precision of the neural code.
View Article and Find Full Text PDFJ Neurosci Methods
January 2011
A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2009
To detect directional couplings from time series various measures based on distances in reconstructed state spaces were introduced. These measures can, however, be biased by asymmetries in the dynamics' structure, noise color, or noise level, which are ubiquitous in experimental signals. Using theoretical reasoning and results from model systems we identify the various sources of bias and show that most of them can be eliminated by an appropriate normalization.
View Article and Find Full Text PDFMeasures of multiple spike train synchrony are essential in order to study issues such as spike timing reliability, network synchronization, and neuronal coding. These measures can broadly be divided in multivariate measures and averages over bivariate measures. One of the most recent bivariate approaches, the ISI-distance, employs the ratio of instantaneous interspike intervals (ISIs).
View Article and Find Full Text PDFObjective: To test whether epileptic seizure prediction algorithms have true predictive power, their performance must be compared with the one expected under well-defined null hypotheses. For this purpose, analytical performance estimates and seizure predictor surrogates were introduced. We here extend the Monte Carlo framework of seizure predictor surrogates by introducing alarm times surrogates.
View Article and Find Full Text PDF