Topological quantum materials exhibit fascinating properties, with important applications for dissipationless electronics and fault-tolerant quantum computers. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend.
View Article and Find Full Text PDFWe report efficient nonradiative energy transfer (NRET) from core-shell, semiconducting quantum dots to adjacent two-dimensional sheets of graphene and MoS2 of single- and few-layer thickness. We observe quenching of the photoluminescence (PL) from individual quantum dots and enhanced PL decay rates in time-resolved PL, corresponding to energy transfer rates of 1-10 ns(-1). Our measurements reveal contrasting trends in the NRET rate from the quantum dot to the van der Waals material as a function of thickness.
View Article and Find Full Text PDFThe outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated.
View Article and Find Full Text PDFUsing angle-resolved photoemission on micrometer-scale sample areas, we directly measure the interlayer twist angle-dependent electronic band structure of bilayer molybdenum-disulfide (MoS2). Our measurements, performed on arbitrarily stacked bilayer MoS2 flakes prepared by chemical vapor deposition, provide direct evidence for a downshift of the quasiparticle energy of the valence band at the Brillouin zone center (Γ̅ point) with the interlayer twist angle, up to a maximum of 120 meV at a twist angle of ∼40°. Our direct measurements of the valence band structure enable the extraction of the hole effective mass as a function of the interlayer twist angle.
View Article and Find Full Text PDFAtomically thin materials such as graphene and semiconducting transition metal dichalcogenides (TMDCs) have attracted extensive interest in recent years, motivating investigation into multiple properties. In this work, we demonstrate a refined version of the optothermal Raman technique to measure the thermal transport properties of two TMDC materials, MoS2 and MoSe2, in single-layer (1L) and bilayer (2L) forms. This new version incorporates two crucial improvements over previous implementations.
View Article and Find Full Text PDFRhenium disulfide (ReS2) is a semiconducting layered transition metal dichalcogenide that exhibits a stable distorted 1T phase. The reduced symmetry of this system leads to in-plane anisotropy in various material properties. Here, we demonstrate the strong anisotropy in the Raman scattering response for linearly polarized excitation.
View Article and Find Full Text PDFAtomically thin two-dimensional semiconductors such as MoS2 hold great promise for electrical, optical and mechanical devices and display novel physical phenomena. However, the electron mobility of mono- and few-layer MoS2 has so far been substantially below theoretically predicted limits, which has hampered efforts to observe its intrinsic quantum transport behaviours. Potential sources of disorder and scattering include defects such as sulphur vacancies in the MoS2 itself as well as extrinsic sources such as charged impurities and remote optical phonons from oxide dielectrics.
View Article and Find Full Text PDFThe piezoelectric characteristics of nanowires, thin films and bulk crystals have been closely studied for potential applications in sensors, transducers, energy conversion and electronics. With their high crystallinity and ability to withstand enormous strain, two-dimensional materials are of great interest as high-performance piezoelectric materials. Monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers.
View Article and Find Full Text PDFWe report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement.
View Article and Find Full Text PDFMolybdenum disulfide bilayers with well-defined interlayer twist angle were constructed by stacking single-crystal monolayers. Varying interlayer twist angle results in strong tuning of the indirect optical transition energy and second-harmonic generation and weak tuning of direct optical transition energies and Raman mode frequencies. Electronic structure calculations show the interlayer separation changes with twist due to repulsion between sulfur atoms, resulting in shifts of the indirect optical transition energies.
View Article and Find Full Text PDFThe translational symmetry breaking of a crystal at its surface may form two-dimensional (2D) electronic states. We observed one-dimensional nonlinear optical edge states of a single atomic membrane of molybdenum disulfide (MoS2), a transition metal dichalcogenide. The electronic structure changes at the edges of the 2D crystal result in strong resonant nonlinear optical susceptibilities, allowing direct optical imaging of the atomic edges and boundaries of a 2D material.
View Article and Find Full Text PDFThe optical confinement generated by metal-based nanoapertures fabricated on a silica substrate has recently enabled single-molecule fluorescence measurements to be performed at physiologically relevant background concentrations of fluorophore-labeled biomolecules. Nonspecific adsorption of fluorophore-labeled biomolecules to the metallic cladding and silica bottoms of nanoapertures, however, remains a critical limitation. To overcome this limitation, we have developed a selective functionalization chemistry whereby the metallic cladding of gold nanoaperture arrays is passivated with methoxy-terminated, thiol-derivatized polyethylene glycol (PEG), and the silica bottoms of those arrays are functionalized with a binary mixture of methoxy- and biotin-terminated, silane-derivatized PEG.
View Article and Find Full Text PDFRecent progress in large-area synthesis of monolayer molybdenum disulphide, a new two-dimensional direct-bandgap semiconductor, is paving the way for applications in atomically thin electronics. Little is known, however, about the microstructure of this material. Here we have refined chemical vapour deposition synthesis to grow highly crystalline islands of monolayer molybdenum disulphide up to 120 μm in size with optical and electrical properties comparable or superior to exfoliated samples.
View Article and Find Full Text PDF