Background: Trypanosomatid parasites are a group of protozoans that cause devastating diseases that disproportionately affect developing countries. These protozoans have developed several mechanisms for adaptation to survive in the mammalian host, such as extensive expansion of multigene families enrolled in host-parasite interaction, adaptation to invade and modulate host cells, and the presence of aneuploidy and polyploidy. Two mechanisms might result in "complex" isolates, with more than two haplotypes being present in a single sample: multiplicity of infections (MOI) and polyploidy.
View Article and Find Full Text PDFWhich variables determine the constraints on gene sequence evolution is one of the most central questions in molecular evolution. In the fission yeast Schizosaccharomyces pombe, an important model organism, the variables influencing the rate of sequence evolution have yet to be determined. Previous studies in other single celled organisms have generally found gene expression levels to be most significant, with numerous other variables such as gene length and functional importance identified as having a smaller impact.
View Article and Find Full Text PDFLNA oligonucleotides constitute a class of bicyclic RNA analogues having an exceptionally high affinity for their complementary DNA and RNA target molecules. We here report a novel method for highly efficient isolation of intact poly(A)+ RNA using an LNA-substituted oligo(dT) affinity ligand, based on the increased affinity of LNA-T for complementary poly(A) tracts. Poly(A)+ RNA was isolated directly from 4 M guanidine thiocyanate-lysed Caenorhabditis elegans worm extracts as well as from lysed human K562 and vincristine-resistant K562/VCR leukemia cells using LNA_2.
View Article and Find Full Text PDF