Phenazine biosynthesis-like domain-containing protein (PBLD) and Cedrelone have been identified as tumor suppressors. However, their roles in virus infection remain unclear. Here, we demonstrate that PBLD upregulates the type I interferon (IFN-I) response through activating NF-kappaB (NF-κB) signaling pathway to resist viral infection in cells and mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Phenazine biosynthesis-like domain-containing protein (PBLD) has been reported to be involved in the development of many cancers. However, whether PBLD regulates innate immune responses and viral replication is unclear. In this study, although it was found that the activity of PBLD extends to other PRRs, we focused on the RLR pathway activated via the p53-USP4-MAVS axis in response to virus infections.
View Article and Find Full Text PDFRecent studies have implicated the phenazine biosynthesis-like domain-containing protein (PBLD) in the negative regulation of the development and progression of various cancers. However, its function in viral infection remains unknown. In this study, we found that PBLD plays important roles in multiple virus infections including BPIV3, SeV, VSV, and HSV-1.
View Article and Find Full Text PDFThe G protein-coupled receptor ADGRE5 (CD97) binds to various metabolites that play crucial regulatory roles in metabolism. However, its function in the antiviral innate immune response remains to be determined. In this study, we report that CD97 inhibits virus-induced type-I interferon (IFN-I) release and enhances RNA virus replication in cells and mice.
View Article and Find Full Text PDFFor viral diseases, vaccination with live attenuated vaccine (LAV) is one of the most effective means for fighting the diseases. However, LAV occasionally overflows from vaccinated individuals circulate in the population with unforeseen consequences. Currently, SARS-CoV-2 LAVs are undergoing clinical trials.
View Article and Find Full Text PDFReceptors for activated C kinase 1 (RACK1) could competitively combine with mitochondrial antiviral signaling protein (MAVS) to inhibit the type I interferon (IFN) signaling pathway during viral infection in vitro. However, whether RACK1 can degrade MAVS to enhance viral replication is still unknown. In this study, we found that bovine epidemic fever virus (BEFV) infection triggered the expression of RACK1.
View Article and Find Full Text PDFDNA damage-inducible transcript 3 (DDIT3) plays important roles in endoplasmic reticulum (ER) stress-induced apoptosis and autophagy, but its role in innate immunity is not clear. Here, we report that DDIT3 inhibits the antiviral immune response during bovine viral diarrhea virus (BVDV) infection by targeting mitochondrial antiviral signaling (MAVS) in Madin-Darby bovine kidney (MDBK) cells and in mice. BVDV infection induced high DDIT3 mRNA and protein expression.
View Article and Find Full Text PDF