Publications by authors named "Daniel Centeno"

Conventional technology for the modification of surfaces loaded with nanomaterials typically requires a three-step process: (1) the construction of a polymer platform, (2) the synthesis of nanoparticles (NPs), and (3) the immobilization or anchoring of NPs. During the immobilization or anchoring process, there is an unavoidable excess of NPs primarily situated at the top of the surface, resulting in the agglomeration of aggregates. These aggregates can form different shapes and sizes, often creating an uneven distribution of NPs, resulting in an unstable coating that gradually releases NPs over time.

View Article and Find Full Text PDF

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC.

View Article and Find Full Text PDF

The synthesis of copper nanoparticles (CuNPs) was accomplished by using a rapid, green, and versatile argon plasma reduction method that involves solvent extraction. With this method, a plasma-solid state interaction forms and CuNPs can be synthesized from copper(II) sulfate using a low-pressure, low-temperature argon plasma. Characterization studies of the CuNPs revealed that when a metal precursor is treated under optimal experimental conditions of 80 W of argon plasma for 300 s, brown CuNPs are synthesized.

View Article and Find Full Text PDF

The synthesis of metal nanoparticles has become a priority for the advancement of nanotechnology. In attempts to create these nanoparticles, several different methods: chemistry, physics, and biology, have all been used. In this study, we report the reduction of cations using argon plasma chemistry to produce nanoparticles of gold (AuNPs), silver (AgNPs), and copper (CuNPs).

View Article and Find Full Text PDF

Taurine, a non-proteogenic amino acid, and commonly used nutritional supplement can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We have found that OC ascites-derived cells contained significantly more intracellular taurine than cell cultures modeling OC.

View Article and Find Full Text PDF

Ovarian carcinoma (OC) forms outgrowths that extend from the outer surface of an afflicted organ into the peritoneum. OC outgrowth formation is poorly understood due to the limited availability of cell culture models examining the behavior of cells that form outgrowths. Prompted by immunochemical evaluation of extracellular matrix (ECM) components in human tissues, laminin and collagen-rich ECM-reconstituted cell culture models amenable to studies of cell clusters that can form outgrowths are developed.

View Article and Find Full Text PDF
Article Synopsis
  • Plasma-initiated free radical polymerization was utilized to create carbon nanoparticles (CNPs) that were modified to carry a potent anti-infection substance called metal-free Russian propolis ethanol extract (MFRPEE), resulting in nano-based drug delivery systems (NBDDSs).
  • The NBDDSs demonstrated improved stability and stronger anti-biofilm effects compared to the free form of MFRPEE due to the modified surface chemistry of the CNPs, which allowed them to specifically target negatively charged elements of biofilms.
  • Additionally, the acidic environment produced by biofilms facilitated the release of MFRPEE from the CNPs, activating its anti-infectious properties, ultimately leading to bacterial cell death by dismantling
View Article and Find Full Text PDF

Background: Most studies reveal that the mechanism of action of propolis against bacteria is functional rather than structural and is attributed to a synergism between the compounds in the extracts.

Hypothesis/purpose: Propolis is said to inhibit bacterial adherence, division, inhibition of water-insoluble glucan formation, and protein synthesis. However, it has been shown that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional and may be attributed to the metals found in propolis.

View Article and Find Full Text PDF