The purpose of this study was to test the hypothesis that the potentiation of concentric twitch force during work cycles is dependent upon both the speed and direction of length change. Concentric and eccentric forces were elicited by stimulating muscles during the shortening and lengthening phases, respectively, of work cycles. Work cycle frequency was varied in order to vary the speed of muscle shortening and/or lengthening; all forces were measured as the muscle passed though optimal length (L(o)).
View Article and Find Full Text PDFThe intent of this study was to determine if the stimulation-induced increase or "potentiation" of dynamic function of mouse extensor digitorum longus muscle (in vitro 25°C) during work cycles is graded to myosin regulatory light-chain (RLC) phosphorylation. To do this, concentric force and muscle work output during sinusoidal length changes were determined before (unpotentiated) and after (potentiated) the application of conditioning stimuli (CS) producing incremental elevations in RLC phosphorylation from rest. Sine wave excursion was from 1.
View Article and Find Full Text PDF