Background: In this phase 1 clinical trial, healthy adult, malaria-naïve subjects were immunized with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) by mosquito bite and then underwent controlled human malaria infection (CHMI). The PfRAS model for immunization against malaria had previously induced >90 % sterile protection against homologous CHMI. This study was to further explore the safety, tolerability and protective efficacy of the PfRAS model and to provide biological specimens to characterize protective immune responses and identify protective antigens in support of malaria vaccine development.
View Article and Find Full Text PDFBackground: Nearly 100% protection against malaria infection can be achieved in humans by immunization with P. falciparum radiation-attenuated sporozoites (RAS). Although it is thought that protection is mediated by T cell and antibody responses, only a few of the many pre-erythrocytic (sporozoite and liver stage) antigens that are targeted by these responses have been identified.
View Article and Find Full Text PDFBackground: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.
Methodology/principal Findings: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad).
Background: A protective malaria vaccine will likely need to elicit both cell-mediated and antibody responses. As adenovirus vaccine vectors induce both these responses in humans, a Phase 1/2a clinical trial was conducted to evaluate the efficacy of an adenovirus serotype 5-vectored malaria vaccine against sporozoite challenge.
Methodology/principal Findings: NMRC-MV-Ad-PfC is an adenovirus vector encoding the Plasmodium falciparum 3D7 circumsporozoite protein (CSP).
Background: Models of immunity to malaria indicate the importance of CD8+ T cell responses for targeting intrahepatic stages and antibodies for targeting sporozoite and blood stages. We designed a multistage adenovirus 5 (Ad5)-vectored Plasmodium falciparum malaria vaccine, aiming to induce both types of responses in humans, that was tested for safety and immunogenicity in a Phase 1 dose escalation trial in Ad5-seronegative volunteers.
Methodology/principal Findings: The NMRC-M3V-Ad-PfCA vaccine combines two adenovectors encoding circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1).
We have evaluated a technology called transcriptionally active PCR (TAP) for high throughput identification and prioritization of novel target antigens from genomic sequence data using the Plasmodium parasite, the causative agent of malaria, as a model. First, we adapted the TAP technology for the highly AT-rich Plasmodium genome, using well-characterized P. falciparum and P.
View Article and Find Full Text PDFThe present study has evaluated the immunogenicity of single or multiple Plasmodium falciparum (Pf) antigens administered in a DNA prime/poxvirus boost regimen with or without the poloxamer CRL1005 in rhesus monkeys. Animals were primed with PfCSP plasmid DNA or a mixture of PfCSP, PfSSP2/TRAP, PfLSA1, PfAMA1 and PfMSP1-42 (CSLAM) DNA vaccines in PBS or formulated with CRL1005, and subsequently boosted with ALVAC-Pf7, a canarypox virus expressing the CSLAM antigens. Cell-mediated immune responses were evaluated by IFN-gamma ELIspot and intracellular cytokine staining, using recombinant proteins and overlapping synthetic peptides.
View Article and Find Full Text PDFEffective vaccines against infectious diseases and biological warfare agents remain an urgent public health priority. Studies have characterized the differentiation of effector and memory T cells and identified a subset of T cells capable of conferring enhanced protective immunity against pathogen challenge. We hypothesized that the kinetics of T cell differentiation influences the immunogenicity and protective efficacy of plasmid DNA vaccines, and tested this hypothesis in the Plasmodium yoelii murine model of malaria.
View Article and Find Full Text PDFThe proceedings of a workshop focusing on a project to evaluate the use of fluorodeoxyglucose-positron emission tomography (FDG-PET) as a tool to measure treatment response in non-Hodgkin lymphoma (NHL) are described. Sponsored by the Leukemia & Lymphoma Society, the Foundation of the National Institutes of Health, and the National Cancer Institute, and attended by representatives of the Food and Drug Administration, the Centers for Medicare and Medicaid Services, and scientists and clinical researchers from academia and the pharmaceutical and medical imaging industries, the workshop reviewed the etiology and current standards of care for NHL and proposed the development of a clinical trial to validate FDG-PET imaging techniques as a predictive biomarker for cancer therapy response. As organized under the auspices of the Oncology Biomarker Qualification Initiative, the three federal health agencies and their private sector and nonprofit/advocacy group partners believe that FDG-PET not only demonstrates the potential to be used for the diagnosis and staging of many cancers but in particular can provide an early indication of therapeutic response that is well correlated with clinical outcomes for chemotherapy for this common form of lymphoma.
View Article and Find Full Text PDFAntibody levels against malaria antigens were measured among patients presenting with uncomplicated malaria at health centers from three locations in Zimbabwe (Bindura, Chiredzi and Kariba) that are distinct with regard to altitude and climatic conditions. Antibody levels were determined by ELISA using the antigens, apical membrane antigen 1 (AMA-1), erythrocyte binding antigen 175 (EBA-175), circumsporozoite surface protein (CSP), merozoite surface protein 1 (MSP-1) and Pfg27. For all the antigens tested, IgG and IgM levels were higher for Bindura (altitude 1100 m) compared to Kariba (<600 m, altitude) and Chiredzi (approximately 600 m, altitude) with the exception of IgG and IgM to AMA-1 and EBA-175 which were similar between Chiredzi and Bindura.
View Article and Find Full Text PDFTwo different cell populations respond to potent T-cell-inducing vaccinations. The induction and loss of effector cells can be seen using an ex vivo enzyme-linked immunospot (ELISPOT) assay, but the more durable resting memory response is demonstrable by a cultured ELISPOT assay. The relationship of the early effector response to durable resting memory is incompletely understood.
View Article and Find Full Text PDFWe evaluated the capacity of the cationic lipid based formulation, Vaxfectin, to enhance the immunogenicity and protective efficacy of DNA-based vaccine regimens in the Plasmodium yoelii murine malaria model. We immunized Balb/c mice with varying doses (0.4-50 microg) of plasmid DNA (pDNA) encoding the P.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI)-anchored proteins coat the surface of extracellular Plasmodium falciparum merozoites, of which several are highly validated candidates for inclusion in a blood-stage malaria vaccine. Here we determined the proteome of gradient-purified detergent-resistant membranes of mature blood-stage parasites and found that these membranes are greatly enriched in GPI-anchored proteins and their putative interacting partners. Also prominent in detergent-resistant membranes are apical organelle (rhoptry), multimembrane-spanning, and proteins destined for export into the host erythrocyte cytosol.
View Article and Find Full Text PDFThe promise of new interventions against malaria and other infectious diseases of global health importance derived from pathogen genomic sequence data may only be realized through the coordinated effort of genomic and post-genomics scientists, vaccine and drug developers along with lab- and field-based investigators. With the availability of the Plasmodium falciparum genome and the genomes of related species, post-genomics research can now be applied to the development of new interventions against malaria and may provide a more complete understanding of complex parasite biology. The vast amount of data that are generated through these new approaches must be organized, assembled and made accessible in a useful manner.
View Article and Find Full Text PDFThe sexual stages of malarial parasites are essential for the mosquito transmission of the disease and therefore are the focus of transmission-blocking drug and vaccine development. In order to better understand genes important to the sexual development process, the transcriptomes of high-purity stage I-V Plasmodium falciparum gametocytes were comprehensively profiled using a full-genome high-density oligonucleotide microarray. The interpretation of this transcriptional data was aided by applying a novel knowledge-based data-mining algorithm termed ontology-based pattern identification (OPI) using current information regarding known sexual stage genes as a guide.
View Article and Find Full Text PDFThe transcriptional repertoire of the in vivo liver stage of Plasmodium has remained largely unidentified and seemingly not amenable to traditional molecular analysis because of the small number of parasites and large number of uninfected hepatocytes. We have overcome this obstruction by utilizing laser capture microdissection to provide a high quality source of parasite mRNA for the construction of a liver stage cDNA library. Sequencing and annotation of this library demonstrated expression of 623 different Plasmodium yoelii genes during development in the hepatocyte.
View Article and Find Full Text PDFPlasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific.
View Article and Find Full Text PDFUsing bioinformatic, proteomic, immunofluorescence, and genetic cross methods, we have functionally characterized a family of putative parasite ligands as potential mediators of cell-cell interactions. We name these proteins the Limulus clotting factor C, Coch-5b2, and Lgl1 (LCCL)-lectin adhesive-like protein (LAP) family. We demonstrate that this family is conserved amongst Plasmodium spp.
View Article and Find Full Text PDFThe concept behind the first Molecular Approaches to Malaria meeting, held 1-5 February 2000 in Lorne, Australia, was ahead of its time; to convene a meeting of malaria researchers, database developers and genomics scientists, and to discuss how genomic sciences and their relevant disciplines could be applied to solve important problems in malaria research. The success of the second Molecular Approaches to Malaria meeting, held 1-5 February 2004 in the same place, together with the influence of genomics on malaria research, is testament to the vision that the organizers had at the first meeting. This review attempts to capture some of the current efforts in the post-genomics era of malaria research and highlights the approaches discussed at the Molecular Approaches to Malaria 2004 meeting.
View Article and Find Full Text PDFTo investigate the role of post-transcriptional controls in the regulation of protein expression for the malaria parasite, Plasmodium falciparum, we have compared mRNA transcript and protein abundance levels for seven different stages of the parasite life cycle. A moderately high positive relationship between mRNA and protein abundance was observed for these stages; the most common discrepancy was a delay between mRNA and protein accumulation. Potentially post-transcriptionally regulated genes are identified, and families of functionally related genes were observed to share similar patterns of mRNA and protein accumulation.
View Article and Find Full Text PDFMalaria is a serious health problem in developing countries. With the complete sequencing of the genomes of the parasite and of the mosquito vector, malaria research has entered the post-genome era. In this report we summarize the results and new research avenues presented at a recent meeting held with the aim of developing interdisciplinary approaches to combat this disease.
View Article and Find Full Text PDFLarge-scale functional genomics studies for malaria vaccine and drug development will depend on the generation of molecular tools to study protein expression. We examined the feasibility of a high-throughput cloning approach using the Gateway system to create a large set of expression clones encoding Plasmodium falciparum single-exon genes. Master clones and their ORFs were transferred en masse to multiple expression vectors.
View Article and Find Full Text PDFThe rhoptries of Plasmodium species participate in merozoite invasion and modification of the host erythrocyte. However, only a few rhoptry proteins have been identified using conventional gene identification protocols. To investigate the protein organization of this organelle and to identify new rhoptry proteins, merozoite rhoptries from three different Plasmodium rodent species were enriched by sucrose density gradient fractionation, and subjected to proteome analysis using multidimensional protein identification technology (MudPIT); 148 proteins were identified.
View Article and Find Full Text PDFThe recent availability of significantly increased levels of funding for unmet medical needs in the developing world, made available by newly created public-private-partnerships, has proven to be a powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure. The investigators bring together important published and unpublished information that illuminates the status of malaria vaccine development.
View Article and Find Full Text PDF