RNA-based medicines have potential to treat a large variety of diseases, and research in the field is very dynamic. Proactively, The European Medicines Agency (EMA) organized a virtual conference on February 2, 2023 to promote the development of RNA-based medicines. The initiative addresses the goal of the EMA Regulatory Science Strategy to 2025 to "catalyse the integration of science and technology in medicines development.
View Article and Find Full Text PDFThe relatively large molecular size, diastereoisomeric nature, and complex impurity profiles of therapeutic phosphorothioate oligonucleotides create significant analytical challenges for the quality control laboratory. To overcome the lack of selectivity inherent to traditional chromatographic approaches, an ion pair liquid chromatography-mass spectrometry (LCMS) method combining ultraviolet and mass spectrometry quantification was developed and validated for >35 different oligonucleotide drug substances and products, including several commercialized drugs. The selection of chromatographic and spectrometric conditions, data acquisition and processing, critical aspects of sample and buffer preparation and instrument maintenance, and results from method validation experiments are discussed.
View Article and Find Full Text PDFA risk-based approach for routine identity testing of therapeutic oligonucleotide drug substances and drug products is described. Risk analysis of solid-phase oligonucleotide synthesis indicates that intact mass measurement is a powerful technique for confirming synthesis of the intended oligonucleotide. Further risk assessment suggests that the addition of a second, sequence-sensitive identity test, which relies on a comparison of some property of the sample to a reference standard of proven identity, results in a sufficient test of identity for most oligonucleotide drug substances and products.
View Article and Find Full Text PDFSafety assessment of drug impurities is a routine part of the drug development process. For oligonucleotide-based drugs, impurities can arise from impurities in starting materials, as by-products of the manufacturing process or from degradation, and are generally structurally similar to the parent oligonucleotide. To study the potential impact of impurities, a representative batch of a 2'-O-methoxyethyl (MOE) antisense oligonucleotide (ASO) was compared to batches of drug that were enriched with nine of the common impurities encountered with the chemical class.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
November 2019
Phosphorothioate oligonucleotide drugs typically contain product-related impurities that are difficult to resolve chromatographically from the parent oligonucleotide due to the size of these compounds and the large number of stereoisomers that comprise the parent. The presence of co-eluting impurities hinders the process of determining assay based on chromatographic separation alone. A mass spectrometry-based purity assessment of the main chromatography peak can be used to quantify co-eluting impurities and enable the accurate determination of assay, but a more direct measure of assay was desired due to the complexity of measuring all co-eluting impurities by mass spectrometry.
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2019
A novel analytical approach capable of measuring deaminated degradation products of oligonucleotide therapeutics is described. The method employs high-resolution mass spectrometry to assess the shift in isotopic distribution that accompanies deamination. Isotopic Distribution Factors (IDF), derived directly from the peak heights of the isotopic pattern, are employed to measure deamination levels of as little as 0.
View Article and Find Full Text PDFRationale: Quantitative Ion-Pair (IP)-HPLC MS methods are employed to determine the complex impurity profiles of oligonucleotide therapeutics. While impurities that co-elute with the main product are routinely monitored, the large number of early and late eluting impurities makes their individual measurements tedious and time-consuming. An improved method is needed for routine analyses.
View Article and Find Full Text PDFThis white paper, which is the 10th in a series intended to address issues associated with the development of therapeutic oligonucleotides, examines the subject of product-related impurities. The authors consider chemistry and safety aspects and advance arguments in favor of platform approaches to impurity identification and qualification. Reporting, identification, and qualification thresholds suitable for product-related impurities of therapeutic oligonucleotides are proposed.
View Article and Find Full Text PDFThis chapter describes the manufacturing process to a certain level for a possible oligonucleotide cargo and a peptide API in a multi-kilogram scale from a manufacture's point of view. In the concluding remarks, possible conjugation methods will be discussed from an industrial-scale perspective.
View Article and Find Full Text PDF[Chemical reaction: See text] Depurination is an important degradation pathway for antisense phosphorothioate oligonucleotides under conditions of thermal stress. We present evidence showing that depurinated oligonucleotides react with cytosine-containing sequences giving products containing a 6-(2-deoxy-beta-D-erythro-pentofuranosyl)-3-(2-oxopropyl)imidazo[1,2-c]pyrimidin-5(6H)-one residue. Further, we demonstrate that the same product is formed upon treatment of 2'-deoxycytidine with 4-oxo-2-pentenal, the latter being an expected byproduct of serial elimination reactions at apurinic sites.
View Article and Find Full Text PDFPhosphorothioate oligonucleotides manufactured by standard phosphoramidite techniques using 2'-deoxyadenosine- or 2'-O-(2-methoxyethyl)-5-methylcytosine-loaded solid supports contain branched impurities consisting of two chains linked through the exocyclic amino group of the 3'-terminal nucleoside of one chain and the 3'-terminal hydroxyl group of another via a P(O)SH group. These impurities are not produced when a universal, non-nucleoside derivatized support is used.
View Article and Find Full Text PDFSome commercial batches of dichloroacetic acid (DCA) contain traces of chloral (trichloroacetaldehyde). Using such DCA to effect detritylation during solid-phase oligonucleotide synthesis results in the formation of a family of process impurities in which the atoms of chloral (Cl3CCHO) are incorporated between the 5'-oxygen and phosphorus atoms of an internucleotide linkage. The structure was elucidated by HPLC with UV and MS detection, digestion of the oligonucleotide, synthesis of model compounds, and 1H and 31P NMR spectroscopy.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2004
Incomplete sulfurization during solid-phase synthesis of phosphorothioate oligonucleotides using phosphoramidite chemistry was identified as the cause of formation of two new classes of process-related oligonucleotide impurities containing a DMTr-C-phosphonate (DMTr=4,4'-dimethoxytrityl) moiety. Phosphite triester intermediates that failed to oxidize (sulfurize) to the corresponding phosphorothioate triester react during the subsequent acid-induced (dichloroacetic acid) detritylation with the DMTr cation or its equivalent in an Arbuzov-type reaction. This leads to formation of DMTr-C-phosphonate mono- and diesters resulting in oligonucleotides modified with a DMTr-C-phosphonate moiety located internally or at the 5'terminal hydroxy group.
View Article and Find Full Text PDFDetritylation of a 5'-O-DMT-2'-deoxyadenosine moiety attached to solid support under acidic condition leads to depurination during oligonucleotide synthesis. Deprotection followed by reversed phase HPLC purification leads to desired oligonucleotide contaminated with significant levels of 3'-terminal phosphorothiaote (3'-TPT) monoester (n-1)-mer. However, it is demonstrated that attachment of dA nucleoside through its exocyclic amino group to solid support leads to substantial reduction of 3'-TPT formation thereby improving the quality of oligonucleotide synthesized.
View Article and Find Full Text PDFA phosphorothioate-linked oligonucleotide bearing a 3'-terminal phosphorothioate monoester has been synthesized and characterized. This oligonucleotide has been identified as a process-related impurity formed during synthesis of ISIS 2302. Biological properties of the compound have been determined.
View Article and Find Full Text PDF