Class-switch DNA recombination (CSR) is central to the antibody response, in that it changes the immunoglobulin heavy chain (IgH) constant region, thereby diversifying biological effector functions of antibodies. The activation-induced cytidine deaminase (AID)-centered CSR machinery excises and rejoins DNA between an upstream (donor) and a downstream (acceptor) S region, which precede the respective constant region DNA. AID is stabilized on S regions by 14-3-3 adaptors.
View Article and Find Full Text PDFImmunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM) are critical for the maturation of the antibody response. Activation-induced cytidine deaminase (AID) initiates CSR and SHM by deaminating deoxycytidines (dCs) in switch (S) and V(D)J region DNA, respectively, to generate deoxyuracils (dUs). Processing of dUs by uracil DNA glycosylase (UNG) yields abasic sites, which are excised by apurinic/apyrimidinic endonucleases, eventually generating double strand DNA breaks, the obligatory intermediates of CSR.
View Article and Find Full Text PDF