Infectious threats, like the COVID-19 pandemic, hinder maintenance of a productive and healthy workforce. If subtle physiological changes precede overt illness, then proactive isolation and testing can reduce labor force impacts. This study hypothesized that an early infection warning service based on wearable physiological monitoring and predictive models created with machine learning could be developed and deployed.
View Article and Find Full Text PDFObjective: This study evaluates the potential for improving patient safety by introducing a metacognitive attention aid that enables clinicians to more easily access and use existing alarm/alert information. It is hypothesized that this introduction will enable clinicians to easily triage alarm/alert events and quickly recognize emergent opportunities to adapt care delivery. The resulting faster response to clinically important alarms/alerts has the potential to prevent adverse events and reduce healthcare costs.
View Article and Find Full Text PDF