Publications by authors named "Daniel C La Grange"

Research on renewable biotechnology for renewable biofuel applications has reached new heights. This is highlighted by extensive biomining for novel enzymes to reduce the production costs from animal and insect gut microbiomes. This study explored the diversity and composition of hemicellulolytic fungi in the gut microbiota from dung beetles of the family Scarabaeidae (, and ).

View Article and Find Full Text PDF

Banana pseudostem (BPS) is an agricultural waste with a high holocellulose content, which, upon hydrolysis, releases fermentable sugars that can be used for bioethanol production. Different pretreatment methods, namely, 3% (w/v) NaOH, 5% (v/v) HSO, and liquid hot water, applied on the BPS resulted in the availability of 52%, 48%, and 25% cellulose after treatment, respectively. Saccharification of the pretreated BPS with 10 FPU/g dry solids (29.

View Article and Find Full Text PDF

Efficient conversion of pentose sugars to ethanol is important for an economically viable lignocellulosic bioethanol process. Ten yeasts fermenting both D-xylose and L-arabinose were subjected to an adaptation process with L-arabinose as carbon source in a medium containing acetic acid. Four -adapted strains were able to ferment L-arabinose to ethanol in the presence of 3 g/L acetic acid at 35°C.

View Article and Find Full Text PDF

The yeast Saccharomyces cerevisiae has a long association with alcoholic fermentation industries and has received renewed interest as a biocatalyst for second-generation bioethanol production. Rational engineering strategies are used to create yeast strains for consolidated bioprocessing of lignocellulosic biomass. Although significant progress is made in this regard with the expression of different cellulolytic activities in yeast, cellobiohydrolase (CBH) titers remain well below ideal levels.

View Article and Find Full Text PDF

Producing biofuels such as ethanol from non-food plant material has the potential to meet transportation fuel requirements in many African countries without impacting directly on food security. The current shortcomings in biomass processing are inefficient fermentation of plant sugars, such as xylose, especially at high temperatures, lack of fermenting microbes that are able to resist inhibitors associated with pre-treated plant material and lack of effective lignocellulolytic enzymes for complete hydrolysis of plant polysaccharides. Due to the presence of residual partially degraded lignocellulose in the gut, the dung of herbivores can be considered as a natural source of pre-treated lignocellulose.

View Article and Find Full Text PDF

Xylan represents a major component of lignocellulosic biomass, and its utilization by Saccharomyces cerevisiae is crucial for the cost effective production of ethanol from plant biomass. A recombinant xylan-degrading and xylose-assimilating Saccharomyces cerevisiae strain was engineered by co-expression of the xylanase (xyn2) of Trichoderma reesei, the xylosidase (xlnD) of Aspergillus niger, the Scheffersomyces stipitis xylulose kinase (xyl3) together with the codon-optimized xylose isomerase (xylA) from Bacteroides thetaiotaomicron. Under aerobic conditions, the recombinant strain displayed a complete respiratory mode, resulting in higher yeast biomass production and consequently higher enzyme production during growth on xylose as carbohydrate source.

View Article and Find Full Text PDF

Background: The main technological impediment to widespread utilization of lignocellulose for the production of fuels and chemicals is the lack of low-cost technologies to overcome its recalcitrance. Organisms that hydrolyze lignocellulose and produce a valuable product such as ethanol at a high rate and titer could significantly reduce the costs of biomass conversion technologies, and will allow separate conversion steps to be combined in a consolidated bioprocess (CBP). Development of Saccharomyces cerevisiae for CBP requires the high level secretion of cellulases, particularly cellobiohydrolases.

View Article and Find Full Text PDF

Lignocellulosic biomass is an abundant renewable feedstock for sustainable production of commodities such as biofuels. The main technological barrier that prevents widespread utilization of this resource for production of commodity products is the lack of low-cost technologies to overcome the recalcitrance of lignocellulose. Organisms that hydrolyse the cellulose and hemicelluloses in biomass and produce a valuable product such as ethanol at a high rate and titre would significantly reduce the costs of current biomass conversion technologies.

View Article and Find Full Text PDF

Beta-glucosidase genes of fungal origins were isolated and heterologously expressed in Saccharomyces cerevisiae to enable growth on the disaccharide, cellobiose. To promote secretion of the beta-glucosidases, the genes were fused to the secretion signal of the Trichoderma reesei xyn2 gene and constitutively expressed from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator.

View Article and Find Full Text PDF

Three different monoacetates of 4-nitrophenyl beta-D-xylopyranoside were tested as substrates for beta-xylosidase and for microbial carbohydrate esterases and a series of non-hemicellulolytic esterases. The acetyl group in 2-O-acetyl, 3-O-acetyl, and 4-O-acetyl 4-nitrophenyl beta-D-xylopyranoside makes the glycoside resistant to the action of beta-xylosidase (EC 3.2.

View Article and Find Full Text PDF