Publications by authors named "Daniel C Donato"

Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity.

View Article and Find Full Text PDF

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots.

View Article and Find Full Text PDF

Forests are increasingly affected by natural disturbances. Subsequent salvage logging, a widespread management practice conducted predominantly to recover economic capital, produces further disturbance and impacts biodiversity worldwide. Hence, naturally disturbed forests are among the most threatened habitats in the world, with consequences for their associated biodiversity.

View Article and Find Full Text PDF

The natural range of variation (NRV) is an important reference for ecosystem management, but has been scarcely quantified for forest landscapes driven by infrequent, severe disturbances. Extreme events such as large, stand-replacing wildfires at multi-century intervals are typical for these regimes; however, data on their characteristics are inherently scarce, and, for land management, these events are commonly considered too large and unpredictable to integrate into planning efforts (the proverbial "Black Swan"). Here, we estimate the NRV of late-seral (mature/old-growth) and early-seral (post-disturbance, pre-canopy-closure) conditions in a forest landscape driven by episodic, large, stand-replacing wildfires: the Western Cascade Range of Washington, USA (2.

View Article and Find Full Text PDF

Future vegetation shifts under changing climate are uncertain for forests with infrequent stand-replacing disturbance regimes. These high-inertia forests may have long persistence even with climate change because disturbance-free periods can span centuries, broad-scale regeneration opportunities are fewer relative to frequent-fire systems, and mature tree species are long-lived with relatively high tolerance for sub-optimal growing conditions. Here, we used a combination of empirical and process-based modeling approaches to examine vegetation projections across high-inertia forests of Washington State, USA, under different climate and wildfire futures.

View Article and Find Full Text PDF

Logging to "salvage" economic returns from forests affected by natural disturbances has become increasingly prevalent globally. Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lacking.A review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non-saproxylic organisms.

View Article and Find Full Text PDF

Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi-regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post-fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century.

View Article and Find Full Text PDF

Mangroves provide extensive ecosystem services that support local livelihoods and international environmental goals, including coastal protection, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects seeking to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through field inventories. To streamline C quantification in mangrove conservation projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific.

View Article and Find Full Text PDF

Increasing rates of natural disturbances under a warming climate raise important questions about how multiple disturbances interact. Escalating wildfire activity in recent decades has resulted in some forests re-burning in short succession, but how the severity of one wildfire affects that of a subsequent wildfire is not fully understood. We used a field-validated, satellite-derived, burn-severity atlas to assess interactions between successive wildfires across the US Northern Rocky Mountains a 300,000-km region dominated by fire-prone forests.

View Article and Find Full Text PDF

Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988.

View Article and Find Full Text PDF

Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.

View Article and Find Full Text PDF

Background: Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand.

View Article and Find Full Text PDF

Widespread tree mortality caused by outbreaks of native bark beetles (Circulionidae: Scolytinae) in recent decades has raised concern among scientists and forest managers about whether beetle outbreaks fuel more ecologically severe forest fires and impair postfire resilience. To investigate this question, we collected extensive field data following multiple fires that burned subalpine forests in 2011 throughout the Northern Rocky Mountains across a spectrum of prefire beetle outbreak severity, primarily from mountain pine beetle (Dendroctonus ponderosae). We found that recent (2001-2010) beetle outbreak severity was unrelated to most field measures of subsequent fire severity, which was instead driven primarily by extreme burning conditions (weather) and topography.

View Article and Find Full Text PDF

Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium.

View Article and Find Full Text PDF

Understanding how disturbances interact to shape ecosystems is a key challenge in ecology. In forests of western North America, the degree to which recent bark beetle outbreaks and subsequent fires may be linked (e.g.

View Article and Find Full Text PDF

The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e.

View Article and Find Full Text PDF

Consequences of bark beetle outbreaks for forest wildfire potential are receiving heightened attention, but little research has considered ecosystems with mixed-severity fire regimes. Such forests are widespread, variable in stand structure, and often fuel limited, suggesting that beetle outbreaks could substantially alter fire potentials. We studied canopy and surface fuels in interior Douglas-fir (Pseudotsuga menziesii v.

View Article and Find Full Text PDF

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded.

View Article and Find Full Text PDF