Spatial patterns of gene expression in living organisms orchestrate cell decisions in development, homeostasis, and disease. However, most methods for reconstructing gene patterning in 3D cell culture and artificial tissues are restricted by patterning depth and scale. We introduce a depth- and scale-flexible method to direct volumetric gene expression patterning in 3D artificial tissues, which we call "heat exchangers for actuation of transcription" (HEAT).
View Article and Find Full Text PDFRecent innovations in the materials used for bioprinting have enabled transformative gains in the resolution and architecture of 3D-printed engineered tissues. We focus here on one of these innovations, reported by Lee et al., which lowers the resolution limit for printing soft biomaterials.
View Article and Find Full Text PDFOvarian cancer (OvCa) is a challenging disease to treat due to poor screening techniques and late diagnosis. There is an urgent need for additional therapy options, as patients recur in 70% of cases. The limited availability of clinical treatment options could be a result of poor predictions in early stage drug screens on standard tissue culture polystyrene (TCPS).
View Article and Find Full Text PDFSolid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves.
View Article and Find Full Text PDFImproved in vitro models are needed to better understand cancer progression and bridge the gap between in vitro proof-of-concept studies, in vivo validation, and clinical application. Multicellular tumor spheroids (MCTS) are a popular method for three-dimensional (3D) cell culture, because they capture some aspects of the dimensionality, cell-cell contact, and cell-matrix interactions seen in vivo. Many approaches exist to create MCTS from cell lines, and they have been used to study tumor cell invasion, growth, and how cells respond to drugs in physiologically relevant 3D microenvironments.
View Article and Find Full Text PDF