Publications by authors named "Daniel C Carrettiero"

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils.

View Article and Find Full Text PDF
Article Synopsis
  • * A study comparing brain samples from ADAD carriers, sporadic AD patients, and healthy controls found that autophagy genes and chaperones were particularly active in ADAD cases.
  • * The findings suggest unique cellular mechanisms in ADAD might offer insights into protection against Alzheimer's, which should be factored into clinical trial designs.
View Article and Find Full Text PDF

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau, folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils.

View Article and Find Full Text PDF

Background: Neuroinflammation in Alzheimer's disease (AD) can occur due to excessive activation of microglia in response to the accumulation of amyloid-β peptide (Aβ). Previously, we demonstrated an increased expression of this peptide in the locus coeruleus (LC) in a sporadic model for AD (streptozotocin, STZ; 2 mg/kg, ICV). We hypothesized that the STZ-AD model exhibits neuroinflammation, and treatment with an inhibitor of microglia (minocycline) can reverse the cognitive, respiratory, sleep, and molecular disorders of this model.

View Article and Find Full Text PDF

Methylmalonic acidemia is an organic acidemia caused by deficient activity of L-methylmalonyl-CoA mutase or its cofactor cyanocobalamin and it is biochemically characterized by an accumulation of methylmalonic acid (MMA) in tissue and body fluids of patients. The main clinical manifestations of this disease are neurological and observable symptoms during metabolic decompensation are encephalopathy, cerebral atrophy, coma, and seizures, which commonly appear in newborns. This study aimed to investigate the toxic effects of MMA in a glial cell line presenting astrocytic features.

View Article and Find Full Text PDF

The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress.

View Article and Find Full Text PDF

Background: Protein aggregates are pathological hallmarks of many neurodegenerative diseases, however the physiopathological role of these aggregates is not fully understood. Protein quality control has a pivotal role for protein homeostasis and depends on specific chaperones. The co-chaperone BAG2 can target phosphorylated Tau for degradation by an ubiquitin-independent pathway, although its possible role in autophagy was not yet elucidated.

View Article and Find Full Text PDF

Methylmalonic acidemia is a rare metabolic disorder caused by the deficient activity of l-methylmalonyl-CoA mutase or its cofactor 5-deoxyadenosylcobalamin and is characterized by accumulation of methylmalonic acid (MMA) and alternative metabolites. The brain is one of the most affected tissues and neurologic symptoms, characterized by seizures, mental retardation, psychomotor abnormalities, and coma, commonly appear in newborns. The molecular mechanisms of neuropathogenesis in methylmalonic acidemia are still poorly understood, specifically regarding the impairments in neuronal development, maturation, and differentiation.

View Article and Find Full Text PDF

Ruthenium red (RR) is a non-selective antagonist of the temperature-sensitive Transient Receptor Potential (TRP) channels and it is an important pharmacological tool in thermoregulatory research. However, the effect of RR on thermoeffector activity is not well established. Here we evaluated the effect of RR on cold-defense thermoeffectors induced by menthol, an agonist of the cold-sensitive TRPM8 channel.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is classically characterized by two major markers: extracellular development of senile plaques and intracellular formation of neurofibrillary tangles. Nonetheless, neuronal glucose hypometabolism and Ca deregulation have been separately implied in the genesis and progress of the neurodegenerative process. In this sense, the goal of this study was to investigate if modifications in the glucose transport would influence the cellular viability and would be involved with the activity of Ca removal from the neuron.

View Article and Find Full Text PDF

Animal models have promoted meaningful contribution to science including Alzheimer's disease (AD) research. Several animal models for AD have been used, most of them related to genetic mutations observed in familial AD. However, sporadic form of AD, also named late-onset is the most frequent form of the disease, which is multifactorial, being influenced by genetic, environmental and lifestyle factors.

View Article and Find Full Text PDF

Thermoregulatory grooming, a behavioral defense against heat, is known to be driven by skin-temperature signals. Because at least some thermal cutaneous signals that drive heat defenses are likely to be generated by transient receptor potential (TRP) channels, we hypothesized that warmth-sensitive TRPs drive thermoregulatory grooming. Adult male Wistar rats were used.

View Article and Find Full Text PDF

Alzheimer disease (AD), which is associated with chronic and progressive neurodegeneration, is the most prevalent cause of dementia linked to aging. Among the risk factors for AD, age stands as the greatest one, with the vast majority of people with AD being 65 years of age or older. Nevertheless, the pathophysiologic mechanisms underlying the link between aging and the development of AD, although not completely understood, might reveal important aspects for the understanding of this pathology.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation - one of the hallmarks of AD -, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ).

View Article and Find Full Text PDF

Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood.

View Article and Find Full Text PDF

In this study, we aimed to evaluate the influence of daily repeated menthol treatments on body mass and thermoregulatory effectors in Wistar rats, considering that menthol is a transient receptor potential melastatin 8 channel agonist that mimics cold sensation and activates thermoregulatory cold-defense mechanisms in mammals, promoting hyperthermia and increasing energy expenditure, and has been suggested as an anti-obesity drug. Male Wistar rats were topically treated with 5% menthol for 3 or 9 consecutive days while body mass, food intake, abdominal temperature, metabolism, cutaneous vasoconstriction, and thermal preference were measured. Menthol promoted hyperthermia on all days of treatment, due to an increase in metabolism and cutaneous vasoconstriction, without affecting food intake, resulting in less mass gain in menthol-hyperthermic animals.

View Article and Find Full Text PDF

In central nervous system cells, low molecular weight fractions (LMWF) from snake venoms can inhibit changes in mitochondrial membrane permeability, preventing the diffusion of cytochrome c to the cytoplasm, inhibiting the activation of pro-apoptotic factors. Here, we evaluated the neuroprotective activity of LMWF from Bothrops jararaca (Bj) snake venom in HO-induced cytotoxicity in cultured hippocampal cells. SDS-PAGE, FT-IR and MALDI-TOF analysis of LMWF (<14 kDa) confirmed the absence of high-molecular-weight proteins in the fraction.

View Article and Find Full Text PDF

Protein aggregation is an important feature of neurodegenerative disorders. In Alzheimer's disease (AD) protein aggregates are composed of hyperphosphorylated Tau and amyloid beta peptide (Aβ). Despite the involvement and identification of the molecular composition of these aggregates, their role in AD pathophysiology is not fully understood.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common dementia in the elderly, is characterized by cognitive impairment and severe autonomic symptoms such as disturbance in core body temperature (Tc), which may be predictors or early events in AD onset. Inclusions of phosphorylated Tau (p-Tau) are a hallmark of AD and other neurodegenerative disorders called "Tauopathies." Animal and human studies show that anesthesia augments p-Tau levels through reduction of Tc, with implications for AD.

View Article and Find Full Text PDF

Temperature influence on the physiology and biochemistry of living organisms has long been recognized, which propels research in the field of thermoregulation. With the cloning and characterization of the transient receptor potential (TRP) ion channels as the principal temperature sensors of the mammalian somatosensory neurons, the understanding, at a molecular level, of thermosensory and thermoregulatory mechanisms became promising. Because thermal environment can be extremely hostile (temperature range on earth's surface is from ∼ -69°C to 58°C), living organisms developed an array of thermoregulatory strategies to guarantee survival, which include both autonomic mechanisms, which aim at increasing or decreasing heat exchange between body, and ambient and behavioral strategies.

View Article and Find Full Text PDF

The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain.

View Article and Find Full Text PDF

Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as "tauopathy," of which Alzheimer's disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome.

View Article and Find Full Text PDF

Amyloid-beta (Aβ) binds to various neuronal receptors and elicits a context- and dose-dependent toxic or trophic response from neurons. The molecular mechanisms for this phenomenon are presently unknown. The cochaperone BAG2 has been shown to mediate important cellular responses to stress, including cell cycle arrest and apoptosis.

View Article and Find Full Text PDF

Alpha2-adrenoceptor and A1 adenosine receptor systems within the nucleus tractus solitarii (NTS) play an important role in cardiovascular control. Deregulation of these systems may result in an elevated sympathetic tone, one of the root causes of neurogenic hypertension. The dorsomedial/dorsolateral and subpostremal NTS subnuclei of spontaneously hypertensive rats (SHR) show density changes in both receptors, even at 15 days of age, prior to the onset of hypertension.

View Article and Find Full Text PDF

Background: Neuroimaging techniques combined with computational neuroanatomy have been playing a role in the investigation of healthy aging and Alzheimer's disease (AD). The definition of normative rules for brain features is a crucial step to establish typical and atypical aging trajectories.

Objective: To introduce an unsupervised pattern recognition method; to define multivariate normative rules of neuroanatomical measures; and to propose a brain abnormality index.

View Article and Find Full Text PDF