Background: The field of cancer immunology is rapidly moving towards innovative therapeutic strategies, resulting in the need for robust and predictive preclinical platforms reflecting the immunological response to cancer. Well characterized preclinical models are essential for the development of predictive biomarkers in the oncology as well as the immune-oncology space. In the current study, gold standard preclinical models are being refined and combined with novel image analysis tools to meet those requirements.
View Article and Find Full Text PDFWe propose a deep learning workflow for the classification of hematoxylin and eosin stained histological whole-slide images of non-small-cell lung cancer. The workflow includes automatic extraction of meta-features for the characterization of the tumor. We show that the tissue-classification produces state-of-the-art results with an average F1-score of 83%.
View Article and Find Full Text PDFIn up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is inevitable. To model the emergence of drug resistance, an EGFR-driven, patient-derived xenograft (PDX) NSCLC model was treated continuously with Gefitinib in vivo.
View Article and Find Full Text PDFSystemic treatment is necessary for one third of patients with renal cell carcinoma. No valid biomarker is currently available to tailor personalized therapy. In this study we established a representative panel of patient derived xenograft (PDX) mouse models from patients with renal cell carcinomas and determined serum levels of high mobility group B1 (HMGB1) protein under treatment with sunitinib, pazopanib, sorafenib, axitinib, temsirolimus and bevacizumab.
View Article and Find Full Text PDF