After muscle loss or injury, skeletal muscle tissue has the ability to regenerate and return its function. However, large volume defects in skeletal muscle tissue pose a challenge to regenerate due to the absence of regenerative elements such as biophysical and biochemical cues, making the development of new treatments necessary. One potential solution is to utilize electroactive polymers that can change size or shape in response to an external electric field.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
December 2021
This paper presents in vitro studies of the sustained release of Annona muricata leaf extracts (AME) from hybrid electrospun fibers for breast cancer treatment. Electrospun hybrid scaffolds were fabricated from crude AME extracts, poly(lactic-co-glycolic acid)/gelatin (PLGA/Ge) and pluronic F127. The physicochemical properties of the AME extract and scaffolds were studied.
View Article and Find Full Text PDFHydrogels have been used for many applications in tissue engineering and regenerative medicine due to their versatile material properties and similarities to the native extracellular matrix. Poly (ethylene glycol) diacrylate (PEGDA) is an ionic electroactive polymer (EAP), a material that responds to an electric field with a change in size or shape while in an ionic solution, that may be used in the development of hydrogels. In this study, we have investigated a positively charged EAP that can bend without the need of external ions.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2019
Advancements in tissue engineering and biomaterial development have the potential to provide a scalable solution to the problem of large-volume skeletal muscle defects. Previous research on the development of scaffolds for skeletal muscle regeneration has focused on strategies for increasing conductivity, which has improved satellite cell attachment and differentiation. However, these strategies usually increase scaffold stiffness, which some studies suggest may be detrimental to myoblast development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
Electroactive hydrogels (EAH) that exhibit large deformation in response to an electric field have received great attention as a potential actuating material for soft robots and artificial muscle. However, their application has been limited due to the use of traditional two-dimensional (2D) fabrication methods. Here we present soft robotic manipulation and locomotion with 3D printed EAH microstructures.
View Article and Find Full Text PDFLarge volume deficiencies in skeletal muscle tissue fail to heal with conservative treatments, and improved treatment methods are needed. Tissue engineered scaffolds for skeletal muscle need to mimic the optimal environment for muscle development by providing the proper electric, mechanical, and chemical cues. Electroactive polymers, polymers that change in size or shape in response to an electric field, may be able to provide the optimal environment for muscle growth.
View Article and Find Full Text PDFConnect Tissue Res
November 2016
Interface tissue engineering involves the development of engineered grafts that promote integration between multiple tissue types. Musculoskeletal tissue interfaces are critical to the safe and efficient transmission of mechanical forces between multiple musculoskeletal tissues, e.g.
View Article and Find Full Text PDFInjuries to peripheral nerves and/or skeletal muscle can cause scar tissue formation and loss of function. The focus of this article is the creation of a conductive, biocompatible scaffold with appropriate mechanical properties to regenerate skeletal muscle. Poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles (Np) were electrospun with poly(ɛ-caprolactone) (PCL) to form conductive scaffolds.
View Article and Find Full Text PDFThe glenohumeral joint is the most frequently dislocated major joint in the body, and instability due to permanent deformation of the glenohumeral capsule is a common pathology. The corresponding change in mechanical properties may have implications for the ideal location and extent of plication, which is a common clinical procedure used to repair the capsule. Therefore, the objective of this study was to quantify the mechanical properties of four regions of the glenohumeral capsule after anterior dislocation and compare the properties to the normal glenohumeral capsule.
View Article and Find Full Text PDFDuring shoulder dislocation, the glenohumeral capsule undergoes non-recoverable strain, leading to joint instability. Clinicians use physical exams to diagnose injury and direct repair procedures; however, they are subjective and do not provide quantitative information. Our objectives were to: (1) determine the relationship between capsule function following anterior dislocation and non-recoverable strain; and (2) identify joint positions at which physical exams can be used to detect non-recoverable strain in specific capsule regions.
View Article and Find Full Text PDFClin Biomech (Bristol)
February 2013
Background: Glenohumeral dislocation commonly results in permanent deformation of the glenohumeral capsule. Knowing the location and extent of tissue damage may aid in improving diagnostic and repair procedures for shoulder dislocations. Therefore, the objectives of this study were to determine: (1) the strain in the anteroinferior capsule at dislocation and (2) the location and extent of injury to the anteroinferior capsule due to dislocation by quantifying the resulting non-recoverable strain.
View Article and Find Full Text PDF