Publications by authors named "Daniel Broseta"

Article Synopsis
  • * In a study using advanced imaging techniques, it was observed that surfactant-promoted methane hydrates form hollow crystals that contribute to a porous structure, with significant insights gained across multiple scales of observation.
  • * The comparison of two surfactants, SDS and AOT, revealed that while AOT promotes faster hydrate formation, it is less effective for long-term gas storage compared to SDS, which is better suited for that purpose; both surfactants do not alter the cage filling of methane hydrate.
View Article and Find Full Text PDF

Methane hydrate is widely distributed in the pores of marine sediments or permafrost soils, contributing to their mechanical properties. Yet the tensile properties of the hydrate at pore scales remain almost completely unknown, notably the influence of grain size on its own cohesion. Here we grow thin films of the hydrate in glass capillaries.

View Article and Find Full Text PDF

We designed and implemented an experimental methodology to investigate gas hydrate formation and growth around a water-guest meniscus in a thin glass capillary, thus mimicking pore-scale processes in sediments. The glass capillary acts as a high-pressure optical cell in a range of supercooling conditions from 0.1 °C, i.

View Article and Find Full Text PDF

We use transmission optical microscopy to observe cyclopentane hydrate growth in sub-mm, open glass capillaries, mimicking cylindrical pores. The capillary is initially loaded with water and the guest fluid (cyclopentane) and thus possesses three menisci, that between water and cyclopentane (CP) in the middle and two menisci with the vapors at the ends. At temperatures T below the equilibrium temperature T ≈ 7 °C, the hydrate nucleates on the water-CP meniscus, rapidly coating it with an immobile, polycrystalline crust.

View Article and Find Full Text PDF

Round glass capillaries are a basic tool in soft-matter science, but often are shunned due to the astigmatism they introduce in micrographs. Here, we show how refraction in a capillary can be a help instead of a hindrance to obtain precise and sensitive information on two important interfacial properties: the contact angle of two immiscible fluids and the presence of thin films on the capillary wall. Understanding optical cusps due to refraction allows direct mesurement of the inner diameter of a capillary at the meniscus, which, with the height of the meniscus cap, determines the contact angle.

View Article and Find Full Text PDF

The master asymptotic behavior of the usual parachor correlations, expressing surface tension sigma as a power law of the density difference rho(L)-rho(V) between coexisting liquid and vapor, is analyzed for a series of pure compounds close to their liquid-vapor critical point, using only four critical parameters (beta(c))-1 , alpha(c) , Z(c) , and Y(c) , for each fluid. This is accomplished by the scale dilatation method of the fluid variables where, in addition to the energy unit (beta(c))-1 and the length unit alpha(c) , the dimensionless numbers Z(c) and Y(c) are the characteristic scale factors of the ordering field along the critical isotherm and of the temperature field along the critical isochore, respectively. The scale dilatation method is then formally analogous to the basic system-dependent formulation of the renormalization theory.

View Article and Find Full Text PDF

We propose an accurate method to predict interfacial tension between water and nonpolar fluids by using Cahn gradient theory. The only necessary elements are (i) a water contact energy function and (ii) an equation of state (EoS) for the nonpolar fluid, chosen here as the Peng-Robinson EoS. The contact energy, a function of the fluid (adsorbate) surface density, is related to interfacial tension (IFT) by means of the Gibbs adsorption equation.

View Article and Find Full Text PDF

We present the master (i.e., unique) behavior of the squared capillary length-the so-called Sugden factor-as a function of the temperaturelike field along the critical isochore, asymptotically close to the gas-liquid critical point of about twenty (one-component) fluids.

View Article and Find Full Text PDF