Publications by authors named "Daniel Brett"

Degradation of cathode materials in lithium-ion batteries results in the presence of transition metal ions in the electrolyte, and these ions are known to play a major role in capacity fade and cell failure. Yet, while it is known that transition metal ions migrate from the metal oxide cathode and deposit on the graphite anode, their specific influence on anode reactions and structures, such as the solid electrolyte interphase (SEI), is still quite poorly understood due to the complexity in studying this interface in operational cells. In this work we combine electrochemical atomic force microscopy (EC-AFM), electrochemical quartz crystal microbalance (EQCM), and electrochemical impedance spectroscopy (EIS) measurements to probe the influence of a range of transition metal ions on the morphological, mechanical, chemical, and electrical properties of the SEI.

View Article and Find Full Text PDF

X-ray computed tomography (X-ray CT) is a non-destructive characterization technique that in recent years has been adopted to study the microstructure of battery electrodes. However, the often manual and laborious data analysis process hinders the extraction of useful metrics that can ultimately inform the mechanisms behind cycle life degradation. This work presents a novel approach that combines two convolutional neural networks to first locate and segment each particle in a nano-CT LiNiMnCoO (NMC) electrode dataset, and successively classifies each particle according to the presence of flaws or cracks within its internal structure.

View Article and Find Full Text PDF

Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies including reverse electrodialysis systems that produce energy from salinity gradients, fuel cells to generate electrical power from the electrochemical reaction between hydrogen and oxygen, and water electrolyser systems that provide H fuel. Anion exchange membrane fuel cells and anion exchange membrane water electrolysers rely on the membrane to transport OH ions between the cathode and anode in a process that involves cooperative interactions with HO molecules and polymer dynamics. Understanding and controlling the interactions between the relaxation and diffusional processes pose a main scientific and critical membrane design challenge.

View Article and Find Full Text PDF

Rechargeable Mg/S batteries have the potential to provide a compelling battery for a range of applications owing to their high capacity and gravimetric energy density, safety, and low-cost construction. However, the Mg/S energy storage is not widely developed and deployed due to technical challenges, which include short cycle lifespan and lack of suitable electrolyte. To study the microstructure degradation of Mg/S batteries, multiscale X-ray tomography, an inherently nondestructive method, is performed on dismantled Swagelok Mg/S cells comprising a graphene-sulfur cathode and a super-P separator.

View Article and Find Full Text PDF

Understanding and ultimately controlling the properties of the solid-electrolyte interphase (SEI) layer at the graphite anode/liquid electrolyte boundary are of great significance for maximizing the performance and lifetime of lithium-ion batteries (LIBs). However, comprehensive in situ monitoring of SEI formation and evolution, alongside measurement of the corresponding mechanical properties, is challenging due to the limitations of the characterization techniques commonly used. This work provides a new insight into SEI formation during the first lithiation and delithiation of graphite battery anodes using operando electrochemical atomic force microscopy (EC-AFM).

View Article and Find Full Text PDF

Purpose: Cardiovascular disease (CVD) and cancer mortality rates in Eastern Europe are among the highest in the world. Although diet is an important risk factor, traditional eating habits in this region have not yet been explored. This analysis assessed the relationship between traditional dietary pattern and mortality from all-causes, CVD and cancer in Eastern European cohorts.

View Article and Find Full Text PDF

Osteoderms are hard tissues embedded in the dermis of vertebrates and have been suggested to be formed from several different mineralized regions. However, their nano architecture and micro mechanical properties had not been fully characterized. Here, using electron microscopy, µ-CT, atomic force microscopy and finite element simulation, an in-depth characterization of osteoderms from the lizard Heloderma suspectum, is presented.

View Article and Find Full Text PDF

The spatial resolution of 3D imaging techniques is often balanced by the achievable field of view. Since pore size in shales spans more than two orders of magnitude, a compromise between representativeness and accuracy of the 3D reconstructed shale microstructure is needed. In this study, we characterise the effect of imaging resolution on the microstructural and mass transport characteristics of shales using micro and nano-computed tomography.

View Article and Find Full Text PDF

Graphene-based carbon sponges can be used in different applications in a large number of fields including microelectronics, energy harvesting and storage, antimicrobial activity and environmental remediation. The functionality and scope of their applications can be broadened considerably by the introduction of metallic nanoparticles into the carbon matrix during preparation or post-synthesis. Here, we report on the use of X-ray micro-computed tomography (CT) as a method of imaging graphene sponges after the uptake of metal (silver and iron) nanoparticles.

View Article and Find Full Text PDF

Lithium-based rechargeable batteries such as lithium-ion (Li-ion), lithium-sulfur (Li-S), and lithium-air (Li-air) cells typically consist of heterogenous porous electrodes. In recent years, there has been growing interest in the use of in-situ and operando micro-CT to capture their physical and chemical states in 3D. The development of in-situ electrochemical cells along with recent improvements in radiation sources have expanded the capabilities of micro-CT as a technique for longitudinal studies on operating mechanisms and degradation.

View Article and Find Full Text PDF

An elemental sulfur electrode was imaged with X-ray micro and nano computed tomography and segmented into its constituent phases. Morphological parameters including phase fractions and pore and particle size distributions were calculated directly from labelled image data, and flux based simulations were performed to determine the effective molecular diffusivity of the pore phase and electrical conductivity of the conductive carbon and binder phase, Deff and σeff, that can be used as an input for Li-S battery modelling. In addition to its crucial role in providing electrical conductivity within the sulfur electrode, the intrinsic porosity of the carbon binder domain was found to significantly influence Li-ion transport within the electrode.

View Article and Find Full Text PDF

Carbon nitride materials with graphitic to polymeric structures (gCNH) were investigated as catalyst supports for the proton exchange membrane (PEM) water electrolyzers using IrO₂ nanoparticles as oxygen evolution electrocatalyst. Here, the performance of IrO₂ nanoparticles formed and deposited in situ onto carbon nitride support for PEM water electrolysis was explored based on previous preliminary studies conducted in related systems. The results revealed that this preparation route catalyzed the decomposition of the carbon nitride to form a material with much lower N content.

View Article and Find Full Text PDF

Objectives: We previously demonstrated oxidative stress in bipolar patients and a relationship between the age of illness onset and total glutathione, a principal antioxidant. In this study, we sought to replicate these findings in a new cohort of patients.

Methods: We recruited bipolar patients from Warneford Hospital, Oxford, UK, of similar age and grouped them according to age of onset of illness.

View Article and Find Full Text PDF

A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte.

View Article and Find Full Text PDF

Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors' knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles.

View Article and Find Full Text PDF

Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets.

View Article and Find Full Text PDF

Background: There is emerging evidence that glutamatergic system dysfunction might play an important role in the pathophysiology of bipolar depression. This review focuses on the use of glutamate receptor modulators for depression in bipolar disorder.

Objectives: 1.

View Article and Find Full Text PDF

Dating to Colonel John Paul Stapp MD in 1975, scientists have desired to measure live human head impacts with accuracy and precision. But no instrument exists to accurately and precisely quantify single head impact events. Our goal is to develop a practical single event head impact dosimeter known as "Intelligent Mouthguard" and quantify its performance on the benchtop, in vitro and in vivo.

View Article and Find Full Text PDF

A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described.

View Article and Find Full Text PDF

The electrodeposition of metallic lithium is a major cause of failure in lithium batteries. The 3D microstructure of electrodeposited lithium 'moss' in liquid electrolytes has been characterised at sub-micron resolution for the first time. Using synchrotron X-ray phase contrast imaging we distinguish mossy metallic lithium microstructures from high surface area lithium salt formations by their contrasting X-ray attenuation.

View Article and Find Full Text PDF

Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/LiCl), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability.

View Article and Find Full Text PDF

Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell.

View Article and Find Full Text PDF

High temperature solid oxide fuel cells (SOFCs), typified by developers such as Siemens Westinghouse and Rolls-Royce, operate in the temperature region of 850-1000 degrees C. For such systems, very high efficiencies can be achieved from integration with gas turbines for large-scale stationary applications. However, high temperature operation means that the components of the stack need to be predominantly ceramic and high temperature metal alloys are needed for many balance-of-plant components.

View Article and Find Full Text PDF

BACKGROUND: Soft tissue sarcomas comprise less than 1% of all solid malignancies. The presentation and behavior of these tumors differs depending on location and histological characteristics. Standard therapy consists of complete surgical resection in combination with adjuvant radiotherapy.

View Article and Find Full Text PDF