Publications by authors named "Daniel Bracewell"

Electrospun cellulose adsorbents are an emergent class of materials applied to a variety of bioprocess separations as an analogue to conventional packed bed chromatography. Electrospun adsorbents have proven to be effective as rapid cycling media, enabling high throughput separation of proteins and viral vectors without compromising selectivity and recovery. However, there is a current lack of knowledge in relation to the manipulation and control of electrospun adsorbent structure with function and performance to cater to the separation needs of emerging, diverse biological products.

View Article and Find Full Text PDF

Recombinant adeno-associated viruses (rAAVs) have emerged as important tools for gene therapy and, more recently, vaccine development. Nonetheless, manufacturing can be costly and time-consuming, emphasizing the importance of alternative production platforms. We investigate the potential of -based cell-free protein synthesis (CFPS) to produce recombinant AAV5 virus-like particles (VLPs).

View Article and Find Full Text PDF

Systematic development of a temperature-controlled isocratic process for one-column low-salt hydrophobic interaction chromatography (HIC) of proteins employing a travelling cooling zone reactor (TCZR) system, is described. Batch binding and confocal scanning microscopy were employed to define process conditions for temperature-reversible binding of bovine serum albumin (BSA) which were validated in pulse-response temperature switching HIC experiments, before transferring to TCZR-HIC. A thin-walled stainless-steel column mounted with a movable assembly of copper blocks and Peltier elements (travelling cooling zone, TCZ) was used for TCZR-HIC.

View Article and Find Full Text PDF

Maximizing product quality attributes by optimizing process parameters and performance attributes is a crucial aspect of bioprocess chromatography process design. Process parameters include but are not limited to bed height, eluate cut points, and elution pH. An under-characterized chromatography process parameter for protein A chromatography is process temperature.

View Article and Find Full Text PDF

Continuously secreted by all cell types, extracellular vesicles (EVs) are small membrane-bound structures which shuttle bioactive cargo between cells across their external environment. Their central role as natural molecular messengers and ability to cross biological barriers has garnered significant attention in the use of EVs as therapeutic delivery vehicles. Still, harnessing the potential of EVs is faced with many obstacles.

View Article and Find Full Text PDF

The demand for Lentiviral Vector (LV) drug substance is increasing. However, primary capture using convective anion-exchange chromatography remains a significant manufacturing challenge. This stems from a poor understanding of the complex adsorption behaviors linked to LVs intricate and variable structure, such as high binding heterogeneity which is typically characterized by a gradient elution profile consisting of two peaks.

View Article and Find Full Text PDF

High throughput process development (HTPD) is established for time- and resource- efficient chromatographic process development. However, integration with non-chromatographic operations within a monoclonal antibody (mAb) purification train is less developed. An area of importance is the development of low pH viral inactivation (VI) that follows protein A chromatography.

View Article and Find Full Text PDF

Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS.

View Article and Find Full Text PDF

Peristaltic pumping during bioprocessing can cause therapeutic protein loss and aggregation during use. Due to the complexity of this apparatus, root-cause mechanisms behind protein loss have been long sought. We have developed new methodologies isolating various peristaltic pump mechanisms to determine their effect on monomer loss.

View Article and Find Full Text PDF

X-ray computed tomography was applied in imaging 3D-printed gyroids used for bioseparation in order to visualize and characterize structures from the entire geometry down to individual nanopores. Methacrylate prints were fabricated with feature sizes of 500 µm, 300 µm, and 200 µm, with the material phase exhibiting a porous substructure in all cases. Two X-ray scanners achieved pixel sizes from 5 µm to 16 nm to produce digital representations of samples across multiple length scales as the basis for geometric analysis and flow simulation.

View Article and Find Full Text PDF

Use of lentiviral vectors (LVs) in clinical Cell and Gene Therapy applications is growing. However, functional product loss during capture chromatography, typically anion-exchange (AIEX), remains a significant unresolved challenge for the design of economic processes. Despite AIEX's extensive use, variable performance and generally low recovery is reported.

View Article and Find Full Text PDF

We constructed a three-input biological logic gate: S OR (G XNOR M), where S is sorbitol, G is glycerol, and M is methanol, to optimize co-expression of two transgenes in using batch-mode carbon source switching (CSS). was engineered to harbor transgenes encoding a triacylglycerol lipase, which can enhance downstream processing by removing host cell lipids from homogenates, and the hepatitis B virus surface antigen (HBsAg), a protein that self-assembles into a virus-like particle (VLP) vaccine. Using the native alcohol oxidase 1 (P) and enolase 1 (P) promoters to direct VLP vaccine and lipase expression, respectively, successfully provided an OR(XNOR) gate function with double-repression as the output.

View Article and Find Full Text PDF

Upstream advances have led to increased mAb titers above 5 g/L in 14-day fed-batch cultures. This is accompanied by higher cell densities and process-related impurities such as DNA and Host Cell Protein (HCP), which have caused challenges for downstream operations. Depth filtration remains a popular choice for harvesting CHO cell culture, and there is interest in utilizing these to remove process-related impurities at the harvest stage.

View Article and Find Full Text PDF

Adenovirus vectors have become an important class of vaccines with the recent approval of Ebola and COVID-19 products. In-process quality attribute data collected during Adenovirus vector manufacturing has focused on particle concentration and infectivity ratios (based on viral genome: cell-based infectivity), and data suggest only a fraction of viral particles present in the final vaccine product are efficacious. To better understand this product heterogeneity, lab-scale preparations of two Adenovirus viral vectors, (Chimpanzee adenovirus (ChAdOx1) and Human adenovirus Type 5 (Ad5), were studied using transmission electron microscopy (TEM).

View Article and Find Full Text PDF

The purification of extracellular vesicles (EVs) remains a major hurdle in the progression of fundamental research and the commercial application of EV-based products. In this study, we evaluated the potential of heparin affinity chromatography (HAC) to purify neural stem cell-derived EVs as part of a multistep process. Bind-elute chromatography, such as HAC, is an attractive method of purification because it is highly scalable, robust and can be automated.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) act as nano-scale molecular messengers owing to their capacity to shuttle functional macromolecular cargo between cells. This intrinsic ability to deliver bioactive cargo has sparked great interest in the use of EVs as novel therapeutic delivery vehicles; investments totaling over $2 billion in 2020 alone were reported for therapeutic EVs. One of the bottlenecks facing the production of EVs is the lack of rapid and high throughput analytics to aid process development.

View Article and Find Full Text PDF

Glycosylation can be a critical quality attribute in biologic manufacturing. In particular, it has implications on the half-life, immunogenicity, and pharmacokinetics of therapeutic monoclonal antibodies (mAbs), and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering, to yield more predictably glycosylated mAbs and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation.

View Article and Find Full Text PDF

Titer improvement has driven process intensification in mAb manufacture. However, this has come with the drawback of high cell densities and associated process related impurities such as cell debris, host cell protein (HCP), and DNA. This affects the capacity of depth filters and can lead to carryover of impurities to protein A chromatography leading to early resin fouling.

View Article and Find Full Text PDF

Two high resolution, 3D imaging techniques were applied to visualize and characterize sterilizing grade dual-layer filtration of liposomes, enabling membrane structure to be related with function and performance. Two polyethersulfone membranes with nominal retention ratings of 650 nm and 200 nm were used to filter liposomes of an average diameter of 143 nm and a polydispersity index of 0.1.

View Article and Find Full Text PDF

As significant improvements in volumetric antibody productivity have been achieved by advances in upstream processing over the last decade, and harvest material has become progressively more difficult to recover with these intensified upstream operations, the segregation of upstream and downstream processing has remained largely unchanged. By integrating upstream and downstream process development, product purification issues are given consideration during the optimization of upstream operating conditions, which mitigates the need for extensive and expensive clearance strategies downstream. To investigate the impact of cell culture duration on critical quality attributes, CHO-expressed IgG1 was cultivated in two 2 L bioreactors with samples taken on days 8, 10, 13, 15, and 17.

View Article and Find Full Text PDF

Analytics for host cell protein (HCP) analysis of therapeutic monoclonal antibody preparations have developed enormously. We consider how learnings from this can inform HCP analysis of gene therapy viral vector products. The application of mass spectrometry (MS) approaches for analysis of HCPs in viral vector preparations is being established, although such information remains limited and is yet to be widely applied into process or host cell line development to reduce HCP amounts or risk.

View Article and Find Full Text PDF

The majority of CD19-directed CAR T cell products are manufactured using an autologous process. Although using a patient's leukapheresis reduces the risks of rejection, it introduces variability in starting material composition and the presence of cell populations that might negatively affect production of chimeric antigen receptor (CAR) T cells, such as myeloid cells. In this work, the effect of monocytes (CD14) on the level of activation, growth, and transduction efficiency was monitored across well plate and culture bag platforms using healthy donor leukapheresis.

View Article and Find Full Text PDF

Tandem-core hepatitis B core antigen (HBcAg) virus-like particles (VLPs), in which two HBcAg monomers are joined together by a peptide linker, can be used to display two different antigens on the VLP surface. We produced universal influenza vaccine candidates that use this scaffold in an -based cell-free protein synthesis (CFPS) platform. We then used the CFPS system to rapidly test modifications to the arginine-rich region typically found in wild-type HBcAg, the peptide linkers around the influenza antigen inserts, and the plasmid vector backbone to improve titer and quality.

View Article and Find Full Text PDF

Recent advances in process analytical technologies and modelling techniques present opportunities to improve industrial chromatography control strategies to enhance process robustness, increase productivity and move towards real-time release testing. This paper provides a critical overview of batch and continuous industrial chromatography control systems for therapeutic protein purification. Firstly, the limitations of conventional industrial fractionation control strategies using in-line UV spectroscopy and on-line HPLC are outlined.

View Article and Find Full Text PDF

A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.

View Article and Find Full Text PDF