Understanding the nature of intermediates/active species in reactions is a major challenge in chemistry. This is because spectator species typically dominate the experimentally derived data and consequently active phase contributions are masked. Transient methods offer a means to bypass this difficulty.
View Article and Find Full Text PDFEutectic mixtures of choline chloride, urea, and water in deep eutectic solvent (DES)/water molar hydration ratios () of 2, 5, and 10, with dissolved cerium salt, were measured using neutron diffraction with isotopic substitution. Structures were modeled using empirical potential structure refinement (EPSR). Ce was found to form highly charged complexes with a mean coordination number between 7 and 8, with the shell containing mostly chloride, followed by water.
View Article and Find Full Text PDFIn this work, H/D isotopic substitution neutron diffraction was combined with empirical potential structure refinement (EPSR) and DFT-based quantum calculations to study the interactions between B(OH) boric acid molecules, B(OH) metaborate ions, water molecules, and potassium cations in borate solutions. The results show that the solute ions and molecules have a marked effect on the second coordination shell of the water molecules, causing a greater deviation from a tetrahedral structure than is observed for pure water. Potassium ions and -B(OH) tend to form a monodentate contact ion pair (MCIP) with a K-B distance ∼3.
View Article and Find Full Text PDFThe structure of aqueous magnesium nitrate solution is gaining significant interest among researchers, especially whether contact ion pairs exist in concentrated solutions. Here, combining X-ray diffraction experiments, quantum chemical calculations and molecular dynamics simulations, we report that the [Mg(NO)] molecular structure in solution from the coexistence of a free [Mg(HO)] octahedral supramolecular structure with a free [NO(HO)] ( = 11-13) supramolecular structure to an [Mg(HO)(NO)] ( = 3, 4, 5; = 3, 2, 1) associated structure with increasing concentration. Interestingly, two hydration modes of NO-the nearest neighbor hydration with a hydration distance less than 3.
View Article and Find Full Text PDFThe solution structure of 1.0 M Uranyl Chloride has been determined by the EPSR modelling of a combination of neutron scattering and EXAFS data. The experimental data show an equilibrium in solution between [UO(HO)] and [UOCl(HO)] with a stability constant of 0.
View Article and Find Full Text PDFDeep eutectic systems are currently under intense investigation to replace traditional organic solvents in a range of syntheses. Here, indole in choline chloride-malic acid deep eutectic solvent (DES) was studied as a function of water content, to identify solute interactions with the DES which affect heterocycle reactivity and selectivity, and as a proxy for biomolecule solvation. Empirical Potential Structure Refinement models of neutron diffraction data showed [Cholinium] cations associate strongly with the indole π-system due to electrostatics, whereas malic acid is only weakly associated.
View Article and Find Full Text PDFThe porous glass MCM-41 is an important adsorbent to study the process of adsorption of gases onto a cylindrical surface. In this work, we study the adsorption of oxygen, nitrogen, deuterium, and deuteriated methane gases into MCM-41 using a combination of neutron diffraction analysis and atomistic computer modeling to interpret the measured data. Adsorption is achieved by immersing a sample of MCM-41 in a bath of the relevant gas, keeping the gas pressure constant (0.
View Article and Find Full Text PDFDeep eutectic solvents (DES) and their hydrated mixtures are used for solvothermal routes towards greener functional nanomaterials. Here we present the first static structural and in situ studies of the formation of iron oxide (hematite) nanoparticles in a DES of choline chloride : urea where xurea = 0.67 (aka.
View Article and Find Full Text PDFWe here report isotope substitution neutron diffraction experiments on two variants of high-density amorphous ice (HDA): its unannealed form prepared pressure-induced amorphization of hexagonal ice at 77 K, and its expanded form prepared decompression of very-high density amorphous ice at 140 K. The latter is about 17 K more stable thermally, so that it can be heated beyond its glass-to-liquid transition to the ultraviscous liquid form at ambient pressure. The structural origin for this large thermal difference and the possibility to reach the deeply supercooled liquid state has not yet been understood.
View Article and Find Full Text PDFThe aqueous behaviour of the anionic octa-tetramethylammonium substituted cubic silsesquioxane, [N(CH3)4]8[Si8O20], was studied with quantitative 29Si-NMR. This molecule partially fragments in aqueous solutions, forming several smaller entities. The most abundant silica species are the monomer, dimer, cyclic trimer, cyclic tetramer and double three-ring.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) and total neutron scattering techniques are established methods for the characterisation of liquid phases in confined pore spaces during chemical reactions. Herein, we describe the first combined total neutron scattering - NMR setup as a probe for the catalytic heterogeneous reduction of benzene-d6 with D2 in 3 wt% Pt/MCM-41.
View Article and Find Full Text PDFQuantitative characterization of the atomic structure of multi-component glasses is a long-standing scientific challenge. This is because in most cases no single experimental technique is capable of completely resolving all aspects of a disordered system's structure. In this situation, the most practical solution for the materials scientist is to apply multiple experimental probes offering differing degrees of insight into a material's properties.
View Article and Find Full Text PDFLow levels of transition metal oxides in alkali borosilicate glass systems can drastically influence crystallisation and phase separation properties. We investigated the non-monotonic effect of manganese doping on suppressing crystallisation, and the influence on optical properties by iron oxide doping, in terms of local atomic structure. Structural models based on empirical potential structure refinement were generated from neutron and X-ray scattering data, and compared against multinuclear solid-state NMR.
View Article and Find Full Text PDFLiquids under confinement exhibit different properties compared with their corresponding bulk phases, for example, miscibility, phase transitions, and diffusion. The underlying cause is the local ordering of molecules, which is usually only studied using pure simulation methods. Herein, we derive experimentally the structure of benzene confined in MCM-41 using total neutron scattering measurements.
View Article and Find Full Text PDFLittle is presently known about the unique nanostructure of deep eutectic solvents (DES). The order of the liquid-solid phase transition is contended and whether DES-water mixtures are merely aqueous solutions, or have properties dominated by the eutectic pair, is unclear. Here, we unambiguously show the structure of choline chloride-malic acid (malicine) as a liquid, and also in solid and hydrated forms, using neutron total scattering on D/H isotope-substituted samples, and quasi-elastic neutron scattering (QENS).
View Article and Find Full Text PDFOrganic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction.
View Article and Find Full Text PDFThe nanostructure of a series of choline chloride/urea/water deep eutectic solvent mixtures was characterized across a wide hydration range by neutron total scattering and empirical potential structure refinement (EPSR). As the structure is significantly altered, even at low hydration levels, reporting the DES water content is important. However, the DES nanostructure is retained to a remarkably high level of water (ca.
View Article and Find Full Text PDFCeria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date.
View Article and Find Full Text PDFMetal-amine solutions provide a unique arena in which to study electrons in solution, and to tune the electron density from the extremes of electrolytic through to true metallic behavior. The existence and structure of a new class of concentrated metal-amine liquid, Li-NH -MeNH , is presented in which the mixed solvent produces a novel type of electron solvation and delocalization that is fundamentally different from either of the constituent systems. NMR, ESR, and neutron diffraction allow the environment of the solvated electron and liquid structure to be precisely interrogated.
View Article and Find Full Text PDFWide-angle neutron scattering experiments combined with empirical potential structural refinement modeling have been used to study the detailed structure of decyltrimethylammonium bromide micelles in the presence of acid solutions of HCl or HBr. These experiments demonstrate considerable variation in micelle structure and water structuring between micelles in the two acid solutions and in comparison with the same micelles in pure water. In the presence of the acids, the micelles are smaller; however, in the presence of HCl the micelles are more loosely structured and disordered while in the presence of HBr the micelles are more compact and closer to spherical.
View Article and Find Full Text PDFThe question of the nature of water's glass transition has continued to be disputed over many years. Here we use slow heating scans (0.4 K min^{-1}) of compact amorphous solid water deposited at 77 K and an analysis of the accompanying changes in the small-angle neutron scattering signal, to study mesoscale changes in the ice network topology.
View Article and Find Full Text PDFTotal neutron scattering has been used to follow the hydrogenation of toluene-d8 to methylcyclohexane-d14 over 3 wt% platinum supported on highly ordered mesoporous silica (MCM-41) at 298 K and under 150 mbar D2 pressure. The detailed kinetic information so revealed indicates that liquid reorganisation inside pores is the slowest step of the whole process. Additionally, the results were compared with the reaction performed under 250 mbar D2 pressure as well as with toluene-h8 hydrogenation using D2 at 150 mbar.
View Article and Find Full Text PDFWe have investigated the properties in water of two tetraalkylammonium bromides (tetramethylammonium, TMA(+), and tetrapropylammonium, TPA(+)), at 0.4 M, using neutron scattering coupled with empirical potential structure refinement to arrive at an atomistic description. Having both a polar and an apolar moiety, it is of interest to determine the strength of each moiety as a function of the alkyl chain length.
View Article and Find Full Text PDFOrganic solvents, such as cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene, are widely used as both reagents and solvents in industrial processes. Despite the ubiquity of these liquids, the local structures that govern the chemical properties have not been studied extensively. Herein, we report neutron diffraction measurements on liquid cyclohexane, cyclohexene, methylcyclohexane, benzene and toluene at 298 K to obtain a detailed description of the local structure in these compounds.
View Article and Find Full Text PDF