Histological assessment is essential for the diagnosis and management of celiac disease. Current scoring systems, including modified Marsh (Marsh-Oberhuber) score, lack inter-pathologist agreement. To address this unmet need, we aimed to develop a fully automated, quantitative approach for histology characterisation of celiac disease.
View Article and Find Full Text PDFIEEE Trans Med Imaging
November 2020
Nuclei mymargin segmentation is a fundamental task for various computational pathology applications including nuclei morphology analysis, cell type classification, and cancer grading. Deep learning has emerged as a powerful approach to segmenting nuclei but the accuracy of convolutional neural networks (CNNs) depends on the volume and the quality of labeled histopathology data for training. In particular, conventional CNN-based approaches lack structured prediction capabilities, which are required to distinguish overlapping and clumped nuclei.
View Article and Find Full Text PDF