Rubisco is the primary CO-fixing enzyme of the biosphere, yet it has slow kinetics. The roles of evolution and chemical mechanism in constraining its biochemical function remain debated. Engineering efforts aimed at adjusting the biochemical parameters of rubisco have largely failed, although recent results indicate that the functional potential of rubisco has a wider scope than previously known.
View Article and Find Full Text PDFThe rapid evolution of viruses generates proteins that are essential for infectivity and replication but with unknown functions, due to extreme sequence divergence. Here, using a database of 67,715 newly predicted protein structures from 4,463 eukaryotic viral species, we found that 62% of viral proteins are structurally distinct and lack homologues in the AlphaFold database. Among the remaining 38% of viral proteins, many have non-viral structural analogues that revealed surprising similarities between human pathogens and their eukaryotic hosts.
View Article and Find Full Text PDFThe RNA-guided ribonuclease CRISPR-Cas13 enables adaptive immunity in bacteria and programmable RNA manipulation in heterologous systems. Cas13s share limited sequence similarity, hindering discovery of related or ancestral systems. To address this, we developed an automated structural-search pipeline to identify an ancestral clade of Cas13 (Cas13an) and further trace Cas13 origins to defense-associated ribonucleases.
View Article and Find Full Text PDFRubisco is the primary CO fixing enzyme of the biosphere yet has slow kinetics. The roles of evolution and chemical mechanism in constraining the sequence landscape of rubisco remain debated. In order to map sequence to function, we developed a massively parallel assay for rubisco using an engineered where enzyme function is coupled to growth.
View Article and Find Full Text PDFCRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities.
View Article and Find Full Text PDFTo adapt to changing environmental niches, bacteria require taxis, a movement toward or away from a stimulus (ligand). Chemotaxis has been studied in some members of the Soft Rot Pectobacteriaceae (SRP), particularly members of the genus . On the contrary, there are fewer studies on this topic for the other genus in the SRP group, namely .
View Article and Find Full Text PDFTwo-component systems (TCS) are important types of machinery allowing for efficient signal recognition and transmission in bacterial cells. The majority of TCSs utilized by bacteria is composed of a sensor histidine kinase (HK) and a cognate response regulator (RR). In the present study, we report two newly predicted protein domains-both to be included in the next release of the Pfam database: Response_reg_2 (PF19192) and HEF_HK (PF19191)-in bacteria which exhibit high structural similarity, respectively, with typical domains of RRs and HKs.
View Article and Find Full Text PDFRoot-knot nematode (RKN) presents a great challenge to Solanaceae crops, including potato. In this study, we investigated transcriptional responses of potato roots during a compatible interaction with . In this respect, differential gene expression of cultivar (cv.
View Article and Find Full Text PDFPlants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus , can employ elaborate mechanisms to breach this defense.
View Article and Find Full Text PDFIn this study, we examine the impact of transcriptional network rearrangements driven by horizontal gene acquisition in PhoP and SlyA regulons using as a case study a phytopathosystem comprised of potato tubers and the soft-rot pathogen 1692 (Pb1692). Genome simulations and statistical analyses uncovered the tendency of PhoP and SlyA networks to mobilize lineage-specific traits predicted as horizontal gene transfer at late infection, highlighting the prominence of regulatory network rearrangements in this stage of infection. The evidence further supports the circumscription of two horizontally acquired quorum-sensing regulators ( and ) by the PhoP network.
View Article and Find Full Text PDFFront Microbiol
October 2019
Unlabelled: The complexity of plant microbial communities provides a rich model for investigating biochemical and regulatory strategies involved in interbacterial competition. Within these niches, the soft rot (SRE) represents an emerging group of plant-pathogens causing soft rot/blackleg diseases resulting in economic losses worldwide in a variety of crops. A preliminary screening using next-generation sequencing of 16S rRNA comparatively analyzing healthy and diseased potato tubers, identified several taxa from to as potential potato endophytes/plant pathogens.
View Article and Find Full Text PDFSoft-rot (SRE), typified by and genera, are phytopathogenic bacteria inflicting soft-rot disease in crops worldwide. By combining genomic information from 100 SRE with whole-transcriptome data sets, we identified novel genomic and transcriptional associations among key pathogenicity themes in this group. Comparative genomics revealed solid linkage between the type I secretion system (T1SS) and the carotovoricin bacteriophage (Ctv) conserved in 96.
View Article and Find Full Text PDFHere we uncover the major evolutionary events shaping the evolution of the GID1 family of gibberellin receptors in land plants at the sequence, structure and gene expression levels. Gibberellic acid (gibberellin, GA) controls key developmental processes in the life cycle of land plants. By interacting with the GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor, GA regulates the expression of a wide range of genes through different pathways.
View Article and Find Full Text PDFDespite the great morphological diversity of insects, there is a regularity in their digestive functions, which is apparently related to their physiology. In the present work we report the de novo midgut transcriptomes of four non-model insects from four distinct orders: Spodoptera frugiperda (Lepidoptera), Musca domestica (Diptera), Tenebrio molitor (Coleoptera) and Dysdercus peruvianus (Hemiptera). We employed a computational strategy to merge assemblies obtained with two different algorithms, which substantially increased the quality of the final transcriptomes.
View Article and Find Full Text PDFSoybean (Glycine max) is a major legume crop worldwide, providing a critical source of protein and oil. The release of the soybean genome fuelled several transcriptome projects comprising multiple developmental stages and environmental conditions. Nevertheless, the global transcriptional patterns of embryonic axes during germination remain unknown.
View Article and Find Full Text PDFAlthough the emergence of bacterial drug resistance is of great concern to the scientific community, few studies have evaluated this phenomenon systematically in fungi by using genome-wide datasets. In the present study, we assembled a large compendium of Saccharomyces cerevisiae chemical genetic data to study the evolution of multidrug resistance genes (MDRs) in the fungal lineage. We found that MDRs typically emerge in widely conserved families, most of which containing homologs from pathogenic fungi, such as Candida albicans and Coccidioides immitis, which could favor the evolution of drug resistance in those species.
View Article and Find Full Text PDFF-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa).
View Article and Find Full Text PDFLarge-scale chemical genetics screens (chemogenomics) in yeast have been widely used to find drug targets, understand the mechanism-of-action of compounds, and unravel the biochemistry of drug resistance. Chemogenomics is based on the comparison of growth of gene deletants in the presence and absence of a chemical substance. Such studies showed that more than 90% of the yeast genes are required for growth in the presence of at least one chemical.
View Article and Find Full Text PDF